|
|
|
|
|
from typing import List
|
|
from urllib.parse import urlsplit
|
|
|
|
import numpy as np
|
|
|
|
|
|
class TritonRemoteModel:
|
|
"""
|
|
Client for interacting with a remote Triton Inference Server model.
|
|
|
|
Attributes:
|
|
endpoint (str): The name of the model on the Triton server.
|
|
url (str): The URL of the Triton server.
|
|
triton_client: The Triton client (either HTTP or gRPC).
|
|
InferInput: The input class for the Triton client.
|
|
InferRequestedOutput: The output request class for the Triton client.
|
|
input_formats (List[str]): The data types of the model inputs.
|
|
np_input_formats (List[type]): The numpy data types of the model inputs.
|
|
input_names (List[str]): The names of the model inputs.
|
|
output_names (List[str]): The names of the model outputs.
|
|
"""
|
|
|
|
def __init__(self, url: str, endpoint: str = "", scheme: str = ""):
|
|
"""
|
|
Initialize the TritonRemoteModel.
|
|
|
|
Arguments may be provided individually or parsed from a collective 'url' argument of the form
|
|
<scheme>://<netloc>/<endpoint>/<task_name>
|
|
|
|
Args:
|
|
url (str): The URL of the Triton server.
|
|
endpoint (str): The name of the model on the Triton server.
|
|
scheme (str): The communication scheme ('http' or 'grpc').
|
|
"""
|
|
if not endpoint and not scheme:
|
|
splits = urlsplit(url)
|
|
endpoint = splits.path.strip("/").split("/")[0]
|
|
scheme = splits.scheme
|
|
url = splits.netloc
|
|
|
|
self.endpoint = endpoint
|
|
self.url = url
|
|
|
|
|
|
if scheme == "http":
|
|
import tritonclient.http as client
|
|
|
|
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
|
|
config = self.triton_client.get_model_config(endpoint)
|
|
else:
|
|
import tritonclient.grpc as client
|
|
|
|
self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
|
|
config = self.triton_client.get_model_config(endpoint, as_json=True)["config"]
|
|
|
|
|
|
config["output"] = sorted(config["output"], key=lambda x: x.get("name"))
|
|
|
|
|
|
type_map = {"TYPE_FP32": np.float32, "TYPE_FP16": np.float16, "TYPE_UINT8": np.uint8}
|
|
self.InferRequestedOutput = client.InferRequestedOutput
|
|
self.InferInput = client.InferInput
|
|
self.input_formats = [x["data_type"] for x in config["input"]]
|
|
self.np_input_formats = [type_map[x] for x in self.input_formats]
|
|
self.input_names = [x["name"] for x in config["input"]]
|
|
self.output_names = [x["name"] for x in config["output"]]
|
|
|
|
def __call__(self, *inputs: np.ndarray) -> List[np.ndarray]:
|
|
"""
|
|
Call the model with the given inputs.
|
|
|
|
Args:
|
|
*inputs (List[np.ndarray]): Input data to the model.
|
|
|
|
Returns:
|
|
(List[np.ndarray]): Model outputs.
|
|
"""
|
|
infer_inputs = []
|
|
input_format = inputs[0].dtype
|
|
for i, x in enumerate(inputs):
|
|
if x.dtype != self.np_input_formats[i]:
|
|
x = x.astype(self.np_input_formats[i])
|
|
infer_input = self.InferInput(self.input_names[i], [*x.shape], self.input_formats[i].replace("TYPE_", ""))
|
|
infer_input.set_data_from_numpy(x)
|
|
infer_inputs.append(infer_input)
|
|
|
|
infer_outputs = [self.InferRequestedOutput(output_name) for output_name in self.output_names]
|
|
outputs = self.triton_client.infer(model_name=self.endpoint, inputs=infer_inputs, outputs=infer_outputs)
|
|
|
|
return [outputs.as_numpy(output_name).astype(input_format) for output_name in self.output_names]
|
|
|