|
|
|
|
|
import gc
|
|
import math
|
|
import os
|
|
import random
|
|
import time
|
|
from contextlib import contextmanager
|
|
from copy import deepcopy
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from ultralytics.utils import (
|
|
DEFAULT_CFG_DICT,
|
|
DEFAULT_CFG_KEYS,
|
|
LOGGER,
|
|
NUM_THREADS,
|
|
PYTHON_VERSION,
|
|
TORCHVISION_VERSION,
|
|
WINDOWS,
|
|
__version__,
|
|
colorstr,
|
|
)
|
|
from ultralytics.utils.checks import check_version
|
|
|
|
try:
|
|
import thop
|
|
except ImportError:
|
|
thop = None
|
|
|
|
|
|
TORCH_1_9 = check_version(torch.__version__, "1.9.0")
|
|
TORCH_1_13 = check_version(torch.__version__, "1.13.0")
|
|
TORCH_2_0 = check_version(torch.__version__, "2.0.0")
|
|
TORCH_2_4 = check_version(torch.__version__, "2.4.0")
|
|
TORCHVISION_0_10 = check_version(TORCHVISION_VERSION, "0.10.0")
|
|
TORCHVISION_0_11 = check_version(TORCHVISION_VERSION, "0.11.0")
|
|
TORCHVISION_0_13 = check_version(TORCHVISION_VERSION, "0.13.0")
|
|
TORCHVISION_0_18 = check_version(TORCHVISION_VERSION, "0.18.0")
|
|
if WINDOWS and check_version(torch.__version__, "==2.4.0"):
|
|
LOGGER.warning(
|
|
"WARNING ⚠️ Known issue with torch==2.4.0 on Windows with CPU, recommend upgrading to torch>=2.4.1 to resolve "
|
|
"https://github.com/ultralytics/ultralytics/issues/15049"
|
|
)
|
|
|
|
|
|
@contextmanager
|
|
def torch_distributed_zero_first(local_rank: int):
|
|
"""Ensures all processes in distributed training wait for the local master (rank 0) to complete a task first."""
|
|
initialized = dist.is_available() and dist.is_initialized()
|
|
|
|
if initialized and local_rank not in {-1, 0}:
|
|
dist.barrier(device_ids=[local_rank])
|
|
yield
|
|
if initialized and local_rank == 0:
|
|
dist.barrier(device_ids=[local_rank])
|
|
|
|
|
|
def smart_inference_mode():
|
|
"""Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""
|
|
|
|
def decorate(fn):
|
|
"""Applies appropriate torch decorator for inference mode based on torch version."""
|
|
if TORCH_1_9 and torch.is_inference_mode_enabled():
|
|
return fn
|
|
else:
|
|
return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)
|
|
|
|
return decorate
|
|
|
|
|
|
def autocast(enabled: bool, device: str = "cuda"):
|
|
"""
|
|
Get the appropriate autocast context manager based on PyTorch version and AMP setting.
|
|
|
|
This function returns a context manager for automatic mixed precision (AMP) training that is compatible with both
|
|
older and newer versions of PyTorch. It handles the differences in the autocast API between PyTorch versions.
|
|
|
|
Args:
|
|
enabled (bool): Whether to enable automatic mixed precision.
|
|
device (str, optional): The device to use for autocast. Defaults to 'cuda'.
|
|
|
|
Returns:
|
|
(torch.amp.autocast): The appropriate autocast context manager.
|
|
|
|
Note:
|
|
- For PyTorch versions 1.13 and newer, it uses `torch.amp.autocast`.
|
|
- For older versions, it uses `torch.cuda.autocast`.
|
|
|
|
Example:
|
|
```python
|
|
with autocast(amp=True):
|
|
# Your mixed precision operations here
|
|
pass
|
|
```
|
|
"""
|
|
if TORCH_1_13:
|
|
return torch.amp.autocast(device, enabled=enabled)
|
|
else:
|
|
return torch.cuda.amp.autocast(enabled)
|
|
|
|
|
|
def get_cpu_info():
|
|
"""Return a string with system CPU information, i.e. 'Apple M2'."""
|
|
from ultralytics.utils import PERSISTENT_CACHE
|
|
|
|
if "cpu_info" not in PERSISTENT_CACHE:
|
|
try:
|
|
import cpuinfo
|
|
|
|
k = "brand_raw", "hardware_raw", "arch_string_raw"
|
|
info = cpuinfo.get_cpu_info()
|
|
string = info.get(k[0] if k[0] in info else k[1] if k[1] in info else k[2], "unknown")
|
|
PERSISTENT_CACHE["cpu_info"] = string.replace("(R)", "").replace("CPU ", "").replace("@ ", "")
|
|
except:
|
|
pass
|
|
return PERSISTENT_CACHE.get("cpu_info", "unknown")
|
|
|
|
|
|
def get_gpu_info(index):
|
|
"""Return a string with system GPU information, i.e. 'Tesla T4, 15102MiB'."""
|
|
properties = torch.cuda.get_device_properties(index)
|
|
return f"{properties.name}, {properties.total_memory / (1 << 20):.0f}MiB"
|
|
|
|
|
|
def select_device(device="", batch=0, newline=False, verbose=True):
|
|
"""
|
|
Selects the appropriate PyTorch device based on the provided arguments.
|
|
|
|
The function takes a string specifying the device or a torch.device object and returns a torch.device object
|
|
representing the selected device. The function also validates the number of available devices and raises an
|
|
exception if the requested device(s) are not available.
|
|
|
|
Args:
|
|
device (str | torch.device, optional): Device string or torch.device object.
|
|
Options are 'None', 'cpu', or 'cuda', or '0' or '0,1,2,3'. Defaults to an empty string, which auto-selects
|
|
the first available GPU, or CPU if no GPU is available.
|
|
batch (int, optional): Batch size being used in your model. Defaults to 0.
|
|
newline (bool, optional): If True, adds a newline at the end of the log string. Defaults to False.
|
|
verbose (bool, optional): If True, logs the device information. Defaults to True.
|
|
|
|
Returns:
|
|
(torch.device): Selected device.
|
|
|
|
Raises:
|
|
ValueError: If the specified device is not available or if the batch size is not a multiple of the number of
|
|
devices when using multiple GPUs.
|
|
|
|
Examples:
|
|
>>> select_device("cuda:0")
|
|
device(type='cuda', index=0)
|
|
|
|
>>> select_device("cpu")
|
|
device(type='cpu')
|
|
|
|
Note:
|
|
Sets the 'CUDA_VISIBLE_DEVICES' environment variable for specifying which GPUs to use.
|
|
"""
|
|
if isinstance(device, torch.device):
|
|
return device
|
|
|
|
s = f"Ultralytics {__version__} 🚀 Python-{PYTHON_VERSION} torch-{torch.__version__} "
|
|
device = str(device).lower()
|
|
for remove in "cuda:", "none", "(", ")", "[", "]", "'", " ":
|
|
device = device.replace(remove, "")
|
|
cpu = device == "cpu"
|
|
mps = device in {"mps", "mps:0"}
|
|
if cpu or mps:
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
|
elif device:
|
|
if device == "cuda":
|
|
device = "0"
|
|
if "," in device:
|
|
device = ",".join([x for x in device.split(",") if x])
|
|
visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = device
|
|
if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.split(","))):
|
|
LOGGER.info(s)
|
|
install = (
|
|
"See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no "
|
|
"CUDA devices are seen by torch.\n"
|
|
if torch.cuda.device_count() == 0
|
|
else ""
|
|
)
|
|
raise ValueError(
|
|
f"Invalid CUDA 'device={device}' requested."
|
|
f" Use 'device=cpu' or pass valid CUDA device(s) if available,"
|
|
f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n"
|
|
f"\ntorch.cuda.is_available(): {torch.cuda.is_available()}"
|
|
f"\ntorch.cuda.device_count(): {torch.cuda.device_count()}"
|
|
f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n"
|
|
f"{install}"
|
|
)
|
|
|
|
if not cpu and not mps and torch.cuda.is_available():
|
|
devices = device.split(",") if device else "0"
|
|
n = len(devices)
|
|
if n > 1:
|
|
if batch < 1:
|
|
raise ValueError(
|
|
"AutoBatch with batch<1 not supported for Multi-GPU training, "
|
|
"please specify a valid batch size, i.e. batch=16."
|
|
)
|
|
if batch >= 0 and batch % n != 0:
|
|
raise ValueError(
|
|
f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or "
|
|
f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}."
|
|
)
|
|
space = " " * (len(s) + 1)
|
|
for i, d in enumerate(devices):
|
|
s += f"{'' if i == 0 else space}CUDA:{d} ({get_gpu_info(i)})\n"
|
|
arg = "cuda:0"
|
|
elif mps and TORCH_2_0 and torch.backends.mps.is_available():
|
|
|
|
s += f"MPS ({get_cpu_info()})\n"
|
|
arg = "mps"
|
|
else:
|
|
s += f"CPU ({get_cpu_info()})\n"
|
|
arg = "cpu"
|
|
|
|
if arg in {"cpu", "mps"}:
|
|
torch.set_num_threads(NUM_THREADS)
|
|
if verbose:
|
|
LOGGER.info(s if newline else s.rstrip())
|
|
return torch.device(arg)
|
|
|
|
|
|
def time_sync():
|
|
"""PyTorch-accurate time."""
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
return time.time()
|
|
|
|
|
|
def fuse_conv_and_bn(conv, bn):
|
|
"""Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/."""
|
|
fusedconv = (
|
|
nn.Conv2d(
|
|
conv.in_channels,
|
|
conv.out_channels,
|
|
kernel_size=conv.kernel_size,
|
|
stride=conv.stride,
|
|
padding=conv.padding,
|
|
dilation=conv.dilation,
|
|
groups=conv.groups,
|
|
bias=True,
|
|
)
|
|
.requires_grad_(False)
|
|
.to(conv.weight.device)
|
|
)
|
|
|
|
|
|
w_conv = conv.weight.view(conv.out_channels, -1)
|
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
|
|
|
|
|
b_conv = torch.zeros(conv.weight.shape[0], device=conv.weight.device) if conv.bias is None else conv.bias
|
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
|
|
|
return fusedconv
|
|
|
|
|
|
def fuse_deconv_and_bn(deconv, bn):
|
|
"""Fuse ConvTranspose2d() and BatchNorm2d() layers."""
|
|
fuseddconv = (
|
|
nn.ConvTranspose2d(
|
|
deconv.in_channels,
|
|
deconv.out_channels,
|
|
kernel_size=deconv.kernel_size,
|
|
stride=deconv.stride,
|
|
padding=deconv.padding,
|
|
output_padding=deconv.output_padding,
|
|
dilation=deconv.dilation,
|
|
groups=deconv.groups,
|
|
bias=True,
|
|
)
|
|
.requires_grad_(False)
|
|
.to(deconv.weight.device)
|
|
)
|
|
|
|
|
|
w_deconv = deconv.weight.view(deconv.out_channels, -1)
|
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
|
fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape))
|
|
|
|
|
|
b_conv = torch.zeros(deconv.weight.shape[1], device=deconv.weight.device) if deconv.bias is None else deconv.bias
|
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
|
fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
|
|
|
return fuseddconv
|
|
|
|
|
|
def model_info(model, detailed=False, verbose=True, imgsz=640):
|
|
"""
|
|
Model information.
|
|
|
|
imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320].
|
|
"""
|
|
if not verbose:
|
|
return
|
|
n_p = get_num_params(model)
|
|
n_g = get_num_gradients(model)
|
|
n_l = len(list(model.modules()))
|
|
if detailed:
|
|
LOGGER.info(
|
|
f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}"
|
|
)
|
|
for i, (name, p) in enumerate(model.named_parameters()):
|
|
name = name.replace("module_list.", "")
|
|
LOGGER.info(
|
|
"%5g %40s %9s %12g %20s %10.3g %10.3g %10s"
|
|
% (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype)
|
|
)
|
|
|
|
flops = get_flops(model, imgsz)
|
|
fused = " (fused)" if getattr(model, "is_fused", lambda: False)() else ""
|
|
fs = f", {flops:.1f} GFLOPs" if flops else ""
|
|
yaml_file = getattr(model, "yaml_file", "") or getattr(model, "yaml", {}).get("yaml_file", "")
|
|
model_name = Path(yaml_file).stem.replace("yolo", "YOLO") or "Model"
|
|
LOGGER.info(f"{model_name} summary{fused}: {n_l:,} layers, {n_p:,} parameters, {n_g:,} gradients{fs}")
|
|
return n_l, n_p, n_g, flops
|
|
|
|
|
|
def get_num_params(model):
|
|
"""Return the total number of parameters in a YOLO model."""
|
|
return sum(x.numel() for x in model.parameters())
|
|
|
|
|
|
def get_num_gradients(model):
|
|
"""Return the total number of parameters with gradients in a YOLO model."""
|
|
return sum(x.numel() for x in model.parameters() if x.requires_grad)
|
|
|
|
|
|
def model_info_for_loggers(trainer):
|
|
"""
|
|
Return model info dict with useful model information.
|
|
|
|
Example:
|
|
YOLOv8n info for loggers
|
|
```python
|
|
results = {
|
|
"model/parameters": 3151904,
|
|
"model/GFLOPs": 8.746,
|
|
"model/speed_ONNX(ms)": 41.244,
|
|
"model/speed_TensorRT(ms)": 3.211,
|
|
"model/speed_PyTorch(ms)": 18.755,
|
|
}
|
|
```
|
|
"""
|
|
if trainer.args.profile:
|
|
from ultralytics.utils.benchmarks import ProfileModels
|
|
|
|
results = ProfileModels([trainer.last], device=trainer.device).profile()[0]
|
|
results.pop("model/name")
|
|
else:
|
|
results = {
|
|
"model/parameters": get_num_params(trainer.model),
|
|
"model/GFLOPs": round(get_flops(trainer.model), 3),
|
|
}
|
|
results["model/speed_PyTorch(ms)"] = round(trainer.validator.speed["inference"], 3)
|
|
return results
|
|
|
|
|
|
def get_flops(model, imgsz=640):
|
|
"""Return a YOLO model's FLOPs."""
|
|
if not thop:
|
|
return 0.0
|
|
|
|
try:
|
|
model = de_parallel(model)
|
|
p = next(model.parameters())
|
|
if not isinstance(imgsz, list):
|
|
imgsz = [imgsz, imgsz]
|
|
try:
|
|
|
|
stride = max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32
|
|
im = torch.empty((1, p.shape[1], stride, stride), device=p.device)
|
|
flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2
|
|
return flops * imgsz[0] / stride * imgsz[1] / stride
|
|
except Exception:
|
|
|
|
im = torch.empty((1, p.shape[1], *imgsz), device=p.device)
|
|
return thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2
|
|
except Exception:
|
|
return 0.0
|
|
|
|
|
|
def get_flops_with_torch_profiler(model, imgsz=640):
|
|
"""Compute model FLOPs (thop package alternative, but 2-10x slower unfortunately)."""
|
|
if not TORCH_2_0:
|
|
return 0.0
|
|
model = de_parallel(model)
|
|
p = next(model.parameters())
|
|
if not isinstance(imgsz, list):
|
|
imgsz = [imgsz, imgsz]
|
|
try:
|
|
|
|
stride = (max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32) * 2
|
|
im = torch.empty((1, p.shape[1], stride, stride), device=p.device)
|
|
with torch.profiler.profile(with_flops=True) as prof:
|
|
model(im)
|
|
flops = sum(x.flops for x in prof.key_averages()) / 1e9
|
|
flops = flops * imgsz[0] / stride * imgsz[1] / stride
|
|
except Exception:
|
|
|
|
im = torch.empty((1, p.shape[1], *imgsz), device=p.device)
|
|
with torch.profiler.profile(with_flops=True) as prof:
|
|
model(im)
|
|
flops = sum(x.flops for x in prof.key_averages()) / 1e9
|
|
return flops
|
|
|
|
|
|
def initialize_weights(model):
|
|
"""Initialize model weights to random values."""
|
|
for m in model.modules():
|
|
t = type(m)
|
|
if t is nn.Conv2d:
|
|
pass
|
|
elif t is nn.BatchNorm2d:
|
|
m.eps = 1e-3
|
|
m.momentum = 0.03
|
|
elif t in {nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU}:
|
|
m.inplace = True
|
|
|
|
|
|
def scale_img(img, ratio=1.0, same_shape=False, gs=32):
|
|
"""Scales and pads an image tensor, optionally maintaining aspect ratio and padding to gs multiple."""
|
|
if ratio == 1.0:
|
|
return img
|
|
h, w = img.shape[2:]
|
|
s = (int(h * ratio), int(w * ratio))
|
|
img = F.interpolate(img, size=s, mode="bilinear", align_corners=False)
|
|
if not same_shape:
|
|
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
|
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)
|
|
|
|
|
|
def copy_attr(a, b, include=(), exclude=()):
|
|
"""Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes."""
|
|
for k, v in b.__dict__.items():
|
|
if (len(include) and k not in include) or k.startswith("_") or k in exclude:
|
|
continue
|
|
else:
|
|
setattr(a, k, v)
|
|
|
|
|
|
def get_latest_opset():
|
|
"""Return the second-most recent ONNX opset version supported by this version of PyTorch, adjusted for maturity."""
|
|
if TORCH_1_13:
|
|
|
|
return max(int(k[14:]) for k in vars(torch.onnx) if "symbolic_opset" in k) - 1
|
|
|
|
version = torch.onnx.producer_version.rsplit(".", 1)[0]
|
|
return {"1.12": 15, "1.11": 14, "1.10": 13, "1.9": 12, "1.8": 12}.get(version, 12)
|
|
|
|
|
|
def intersect_dicts(da, db, exclude=()):
|
|
"""Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values."""
|
|
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
|
|
|
|
|
|
def is_parallel(model):
|
|
"""Returns True if model is of type DP or DDP."""
|
|
return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel))
|
|
|
|
|
|
def de_parallel(model):
|
|
"""De-parallelize a model: returns single-GPU model if model is of type DP or DDP."""
|
|
return model.module if is_parallel(model) else model
|
|
|
|
|
|
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
|
"""Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf."""
|
|
return lambda x: max((1 - math.cos(x * math.pi / steps)) / 2, 0) * (y2 - y1) + y1
|
|
|
|
|
|
def init_seeds(seed=0, deterministic=False):
|
|
"""Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html."""
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
if deterministic:
|
|
if TORCH_2_0:
|
|
torch.use_deterministic_algorithms(True, warn_only=True)
|
|
torch.backends.cudnn.deterministic = True
|
|
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
|
os.environ["PYTHONHASHSEED"] = str(seed)
|
|
else:
|
|
LOGGER.warning("WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training.")
|
|
else:
|
|
torch.use_deterministic_algorithms(False)
|
|
torch.backends.cudnn.deterministic = False
|
|
|
|
|
|
class ModelEMA:
|
|
"""
|
|
Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models. Keeps a moving
|
|
average of everything in the model state_dict (parameters and buffers).
|
|
|
|
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
|
|
|
To disable EMA set the `enabled` attribute to `False`.
|
|
"""
|
|
|
|
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
|
|
"""Initialize EMA for 'model' with given arguments."""
|
|
self.ema = deepcopy(de_parallel(model)).eval()
|
|
self.updates = updates
|
|
self.decay = lambda x: decay * (1 - math.exp(-x / tau))
|
|
for p in self.ema.parameters():
|
|
p.requires_grad_(False)
|
|
self.enabled = True
|
|
|
|
def update(self, model):
|
|
"""Update EMA parameters."""
|
|
if self.enabled:
|
|
self.updates += 1
|
|
d = self.decay(self.updates)
|
|
|
|
msd = de_parallel(model).state_dict()
|
|
for k, v in self.ema.state_dict().items():
|
|
if v.dtype.is_floating_point:
|
|
v *= d
|
|
v += (1 - d) * msd[k].detach()
|
|
|
|
|
|
def update_attr(self, model, include=(), exclude=("process_group", "reducer")):
|
|
"""Updates attributes and saves stripped model with optimizer removed."""
|
|
if self.enabled:
|
|
copy_attr(self.ema, model, include, exclude)
|
|
|
|
|
|
def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: dict = None) -> dict:
|
|
"""
|
|
Strip optimizer from 'f' to finalize training, optionally save as 's'.
|
|
|
|
Args:
|
|
f (str): file path to model to strip the optimizer from. Default is 'best.pt'.
|
|
s (str): file path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten.
|
|
updates (dict): a dictionary of updates to overlay onto the checkpoint before saving.
|
|
|
|
Returns:
|
|
(dict): The combined checkpoint dictionary.
|
|
|
|
Example:
|
|
```python
|
|
from pathlib import Path
|
|
from ultralytics.utils.torch_utils import strip_optimizer
|
|
|
|
for f in Path("path/to/model/checkpoints").rglob("*.pt"):
|
|
strip_optimizer(f)
|
|
```
|
|
|
|
Note:
|
|
Use `ultralytics.nn.torch_safe_load` for missing modules with `x = torch_safe_load(f)[0]`
|
|
"""
|
|
try:
|
|
x = torch.load(f, map_location=torch.device("cpu"))
|
|
assert isinstance(x, dict), "checkpoint is not a Python dictionary"
|
|
assert "model" in x, "'model' missing from checkpoint"
|
|
except Exception as e:
|
|
LOGGER.warning(f"WARNING ⚠️ Skipping {f}, not a valid Ultralytics model: {e}")
|
|
return {}
|
|
|
|
metadata = {
|
|
"date": datetime.now().isoformat(),
|
|
"version": __version__,
|
|
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
|
|
"docs": "https://docs.ultralytics.com",
|
|
}
|
|
|
|
|
|
if x.get("ema"):
|
|
x["model"] = x["ema"]
|
|
if hasattr(x["model"], "args"):
|
|
x["model"].args = dict(x["model"].args)
|
|
if hasattr(x["model"], "criterion"):
|
|
x["model"].criterion = None
|
|
x["model"].half()
|
|
for p in x["model"].parameters():
|
|
p.requires_grad = False
|
|
|
|
|
|
args = {**DEFAULT_CFG_DICT, **x.get("train_args", {})}
|
|
for k in "optimizer", "best_fitness", "ema", "updates":
|
|
x[k] = None
|
|
x["epoch"] = -1
|
|
x["train_args"] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}
|
|
|
|
|
|
|
|
combined = {**metadata, **x, **(updates or {})}
|
|
torch.save(combined, s or f)
|
|
mb = os.path.getsize(s or f) / 1e6
|
|
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
|
return combined
|
|
|
|
|
|
def convert_optimizer_state_dict_to_fp16(state_dict):
|
|
"""
|
|
Converts the state_dict of a given optimizer to FP16, focusing on the 'state' key for tensor conversions.
|
|
|
|
This method aims to reduce storage size without altering 'param_groups' as they contain non-tensor data.
|
|
"""
|
|
for state in state_dict["state"].values():
|
|
for k, v in state.items():
|
|
if k != "step" and isinstance(v, torch.Tensor) and v.dtype is torch.float32:
|
|
state[k] = v.half()
|
|
|
|
return state_dict
|
|
|
|
|
|
def profile(input, ops, n=10, device=None):
|
|
"""
|
|
Ultralytics speed, memory and FLOPs profiler.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.utils.torch_utils import profile
|
|
|
|
input = torch.randn(16, 3, 640, 640)
|
|
m1 = lambda x: x * torch.sigmoid(x)
|
|
m2 = nn.SiLU()
|
|
profile(input, [m1, m2], n=100) # profile over 100 iterations
|
|
```
|
|
"""
|
|
results = []
|
|
if not isinstance(device, torch.device):
|
|
device = select_device(device)
|
|
LOGGER.info(
|
|
f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
|
|
f"{'input':>24s}{'output':>24s}"
|
|
)
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
for x in input if isinstance(input, list) else [input]:
|
|
x = x.to(device)
|
|
x.requires_grad = True
|
|
for m in ops if isinstance(ops, list) else [ops]:
|
|
m = m.to(device) if hasattr(m, "to") else m
|
|
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
|
tf, tb, t = 0, 0, [0, 0, 0]
|
|
try:
|
|
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1e9 * 2 if thop else 0
|
|
except Exception:
|
|
flops = 0
|
|
|
|
try:
|
|
for _ in range(n):
|
|
t[0] = time_sync()
|
|
y = m(x)
|
|
t[1] = time_sync()
|
|
try:
|
|
(sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
|
|
t[2] = time_sync()
|
|
except Exception:
|
|
|
|
t[2] = float("nan")
|
|
tf += (t[1] - t[0]) * 1000 / n
|
|
tb += (t[2] - t[1]) * 1000 / n
|
|
mem = torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0
|
|
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else "list" for x in (x, y))
|
|
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0
|
|
LOGGER.info(f"{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}")
|
|
results.append([p, flops, mem, tf, tb, s_in, s_out])
|
|
except Exception as e:
|
|
LOGGER.info(e)
|
|
results.append(None)
|
|
finally:
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
return results
|
|
|
|
|
|
class EarlyStopping:
|
|
"""Early stopping class that stops training when a specified number of epochs have passed without improvement."""
|
|
|
|
def __init__(self, patience=50):
|
|
"""
|
|
Initialize early stopping object.
|
|
|
|
Args:
|
|
patience (int, optional): Number of epochs to wait after fitness stops improving before stopping.
|
|
"""
|
|
self.best_fitness = 0.0
|
|
self.best_epoch = 0
|
|
self.patience = patience or float("inf")
|
|
self.possible_stop = False
|
|
|
|
def __call__(self, epoch, fitness):
|
|
"""
|
|
Check whether to stop training.
|
|
|
|
Args:
|
|
epoch (int): Current epoch of training
|
|
fitness (float): Fitness value of current epoch
|
|
|
|
Returns:
|
|
(bool): True if training should stop, False otherwise
|
|
"""
|
|
if fitness is None:
|
|
return False
|
|
|
|
if fitness >= self.best_fitness:
|
|
self.best_epoch = epoch
|
|
self.best_fitness = fitness
|
|
delta = epoch - self.best_epoch
|
|
self.possible_stop = delta >= (self.patience - 1)
|
|
stop = delta >= self.patience
|
|
if stop:
|
|
prefix = colorstr("EarlyStopping: ")
|
|
LOGGER.info(
|
|
f"{prefix}Training stopped early as no improvement observed in last {self.patience} epochs. "
|
|
f"Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n"
|
|
f"To update EarlyStopping(patience={self.patience}) pass a new patience value, "
|
|
f"i.e. `patience=300` or use `patience=0` to disable EarlyStopping."
|
|
)
|
|
return stop
|
|
|