|
|
|
"""Monkey patches to update/extend functionality of existing functions."""
|
|
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
_imshow = cv2.imshow
|
|
|
|
|
|
def imread(filename: str, flags: int = cv2.IMREAD_COLOR):
|
|
"""
|
|
Read an image from a file.
|
|
|
|
Args:
|
|
filename (str): Path to the file to read.
|
|
flags (int, optional): Flag that can take values of cv2.IMREAD_*. Defaults to cv2.IMREAD_COLOR.
|
|
|
|
Returns:
|
|
(np.ndarray): The read image.
|
|
"""
|
|
return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
|
|
|
|
|
|
def imwrite(filename: str, img: np.ndarray, params=None):
|
|
"""
|
|
Write an image to a file.
|
|
|
|
Args:
|
|
filename (str): Path to the file to write.
|
|
img (np.ndarray): Image to write.
|
|
params (list of ints, optional): Additional parameters. See OpenCV documentation.
|
|
|
|
Returns:
|
|
(bool): True if the file was written, False otherwise.
|
|
"""
|
|
try:
|
|
cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename)
|
|
return True
|
|
except Exception:
|
|
return False
|
|
|
|
|
|
def imshow(winname: str, mat: np.ndarray):
|
|
"""
|
|
Displays an image in the specified window.
|
|
|
|
Args:
|
|
winname (str): Name of the window.
|
|
mat (np.ndarray): Image to be shown.
|
|
"""
|
|
_imshow(winname.encode("unicode_escape").decode(), mat)
|
|
|
|
|
|
|
|
_torch_load = torch.load
|
|
_torch_save = torch.save
|
|
|
|
|
|
def torch_load(*args, **kwargs):
|
|
"""
|
|
Load a PyTorch model with updated arguments to avoid warnings.
|
|
|
|
This function wraps torch.load and adds the 'weights_only' argument for PyTorch 1.13.0+ to prevent warnings.
|
|
|
|
Args:
|
|
*args (Any): Variable length argument list to pass to torch.load.
|
|
**kwargs (Any): Arbitrary keyword arguments to pass to torch.load.
|
|
|
|
Returns:
|
|
(Any): The loaded PyTorch object.
|
|
|
|
Note:
|
|
For PyTorch versions 2.0 and above, this function automatically sets 'weights_only=False'
|
|
if the argument is not provided, to avoid deprecation warnings.
|
|
"""
|
|
from ultralytics.utils.torch_utils import TORCH_1_13
|
|
|
|
if TORCH_1_13 and "weights_only" not in kwargs:
|
|
kwargs["weights_only"] = False
|
|
|
|
return _torch_load(*args, **kwargs)
|
|
|
|
|
|
def torch_save(*args, **kwargs):
|
|
"""
|
|
Optionally use dill to serialize lambda functions where pickle does not, adding robustness with 3 retries and
|
|
exponential standoff in case of save failure.
|
|
|
|
Args:
|
|
*args (tuple): Positional arguments to pass to torch.save.
|
|
**kwargs (Any): Keyword arguments to pass to torch.save.
|
|
"""
|
|
for i in range(4):
|
|
try:
|
|
return _torch_save(*args, **kwargs)
|
|
except RuntimeError as e:
|
|
if i == 3:
|
|
raise e
|
|
time.sleep((2**i) / 2)
|
|
|