|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from ultralytics.utils.metrics import OKS_SIGMA
|
|
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
|
|
from ultralytics.utils.tal import RotatedTaskAlignedAssigner, TaskAlignedAssigner, dist2bbox, dist2rbox, make_anchors
|
|
from ultralytics.utils.torch_utils import autocast
|
|
|
|
from .metrics import bbox_iou, probiou
|
|
from .tal import bbox2dist
|
|
|
|
|
|
class VarifocalLoss(nn.Module):
|
|
"""
|
|
Varifocal loss by Zhang et al.
|
|
|
|
https://arxiv.org/abs/2008.13367.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Initialize the VarifocalLoss class."""
|
|
super().__init__()
|
|
|
|
@staticmethod
|
|
def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
|
|
"""Computes varfocal loss."""
|
|
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
|
|
with autocast(enabled=False):
|
|
loss = (
|
|
(F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction="none") * weight)
|
|
.mean(1)
|
|
.sum()
|
|
)
|
|
return loss
|
|
|
|
|
|
class FocalLoss(nn.Module):
|
|
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
|
|
|
|
def __init__(self):
|
|
"""Initializer for FocalLoss class with no parameters."""
|
|
super().__init__()
|
|
|
|
@staticmethod
|
|
def forward(pred, label, gamma=1.5, alpha=0.25):
|
|
"""Calculates and updates confusion matrix for object detection/classification tasks."""
|
|
loss = F.binary_cross_entropy_with_logits(pred, label, reduction="none")
|
|
|
|
|
|
|
|
|
|
pred_prob = pred.sigmoid()
|
|
p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
|
|
modulating_factor = (1.0 - p_t) ** gamma
|
|
loss *= modulating_factor
|
|
if alpha > 0:
|
|
alpha_factor = label * alpha + (1 - label) * (1 - alpha)
|
|
loss *= alpha_factor
|
|
return loss.mean(1).sum()
|
|
|
|
|
|
class DFLoss(nn.Module):
|
|
"""Criterion class for computing DFL losses during training."""
|
|
|
|
def __init__(self, reg_max=16) -> None:
|
|
"""Initialize the DFL module."""
|
|
super().__init__()
|
|
self.reg_max = reg_max
|
|
|
|
def __call__(self, pred_dist, target):
|
|
"""
|
|
Return sum of left and right DFL losses.
|
|
|
|
Distribution Focal Loss (DFL) proposed in Generalized Focal Loss
|
|
https://ieeexplore.ieee.org/document/9792391
|
|
"""
|
|
target = target.clamp_(0, self.reg_max - 1 - 0.01)
|
|
tl = target.long()
|
|
tr = tl + 1
|
|
wl = tr - target
|
|
wr = 1 - wl
|
|
return (
|
|
F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl
|
|
+ F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr
|
|
).mean(-1, keepdim=True)
|
|
|
|
|
|
class BboxLoss(nn.Module):
|
|
"""Criterion class for computing training losses during training."""
|
|
|
|
def __init__(self, reg_max=16):
|
|
"""Initialize the BboxLoss module with regularization maximum and DFL settings."""
|
|
super().__init__()
|
|
self.dfl_loss = DFLoss(reg_max) if reg_max > 1 else None
|
|
|
|
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
|
|
"""IoU loss."""
|
|
weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
|
|
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
|
|
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
|
|
|
|
|
|
if self.dfl_loss:
|
|
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.dfl_loss.reg_max - 1)
|
|
loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight
|
|
loss_dfl = loss_dfl.sum() / target_scores_sum
|
|
else:
|
|
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
|
|
|
|
return loss_iou, loss_dfl
|
|
|
|
|
|
class RotatedBboxLoss(BboxLoss):
|
|
"""Criterion class for computing training losses during training."""
|
|
|
|
def __init__(self, reg_max):
|
|
"""Initialize the BboxLoss module with regularization maximum and DFL settings."""
|
|
super().__init__(reg_max)
|
|
|
|
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
|
|
"""IoU loss."""
|
|
weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
|
|
iou = probiou(pred_bboxes[fg_mask], target_bboxes[fg_mask])
|
|
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
|
|
|
|
|
|
if self.dfl_loss:
|
|
target_ltrb = bbox2dist(anchor_points, xywh2xyxy(target_bboxes[..., :4]), self.dfl_loss.reg_max - 1)
|
|
loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight
|
|
loss_dfl = loss_dfl.sum() / target_scores_sum
|
|
else:
|
|
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
|
|
|
|
return loss_iou, loss_dfl
|
|
|
|
|
|
class KeypointLoss(nn.Module):
|
|
"""Criterion class for computing training losses."""
|
|
|
|
def __init__(self, sigmas) -> None:
|
|
"""Initialize the KeypointLoss class."""
|
|
super().__init__()
|
|
self.sigmas = sigmas
|
|
|
|
def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
|
|
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
|
|
d = (pred_kpts[..., 0] - gt_kpts[..., 0]).pow(2) + (pred_kpts[..., 1] - gt_kpts[..., 1]).pow(2)
|
|
kpt_loss_factor = kpt_mask.shape[1] / (torch.sum(kpt_mask != 0, dim=1) + 1e-9)
|
|
|
|
e = d / ((2 * self.sigmas).pow(2) * (area + 1e-9) * 2)
|
|
return (kpt_loss_factor.view(-1, 1) * ((1 - torch.exp(-e)) * kpt_mask)).mean()
|
|
|
|
|
|
class v8DetectionLoss:
|
|
"""Criterion class for computing training losses."""
|
|
|
|
def __init__(self, model, tal_topk=10):
|
|
"""Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function."""
|
|
device = next(model.parameters()).device
|
|
h = model.args
|
|
|
|
m = model.model[-1]
|
|
self.bce = nn.BCEWithLogitsLoss(reduction="none")
|
|
self.hyp = h
|
|
self.stride = m.stride
|
|
self.nc = m.nc
|
|
self.no = m.nc + m.reg_max * 4
|
|
self.reg_max = m.reg_max
|
|
self.device = device
|
|
|
|
self.use_dfl = m.reg_max > 1
|
|
|
|
self.assigner = TaskAlignedAssigner(topk=tal_topk, num_classes=self.nc, alpha=0.5, beta=6.0)
|
|
self.bbox_loss = BboxLoss(m.reg_max).to(device)
|
|
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
|
|
|
|
def preprocess(self, targets, batch_size, scale_tensor):
|
|
"""Preprocesses the target counts and matches with the input batch size to output a tensor."""
|
|
nl, ne = targets.shape
|
|
if nl == 0:
|
|
out = torch.zeros(batch_size, 0, ne - 1, device=self.device)
|
|
else:
|
|
i = targets[:, 0]
|
|
_, counts = i.unique(return_counts=True)
|
|
counts = counts.to(dtype=torch.int32)
|
|
out = torch.zeros(batch_size, counts.max(), ne - 1, device=self.device)
|
|
for j in range(batch_size):
|
|
matches = i == j
|
|
n = matches.sum()
|
|
if n:
|
|
out[j, :n] = targets[matches, 1:]
|
|
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
|
return out
|
|
|
|
def bbox_decode(self, anchor_points, pred_dist):
|
|
"""Decode predicted object bounding box coordinates from anchor points and distribution."""
|
|
if self.use_dfl:
|
|
b, a, c = pred_dist.shape
|
|
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
|
|
|
|
|
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
|
|
|
def __call__(self, preds, batch):
|
|
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
|
|
loss = torch.zeros(3, device=self.device)
|
|
feats = preds[1] if isinstance(preds, tuple) else preds
|
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
|
(self.reg_max * 4, self.nc), 1
|
|
)
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
|
|
|
dtype = pred_scores.dtype
|
|
batch_size = pred_scores.shape[0]
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
|
|
|
|
|
targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
|
gt_labels, gt_bboxes = targets.split((1, 4), 2)
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0)
|
|
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri)
|
|
|
|
|
|
|
|
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
|
|
|
|
pred_scores.detach().sigmoid(),
|
|
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
|
anchor_points * stride_tensor,
|
|
gt_labels,
|
|
gt_bboxes,
|
|
mask_gt,
|
|
)
|
|
|
|
target_scores_sum = max(target_scores.sum(), 1)
|
|
|
|
|
|
|
|
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum
|
|
|
|
|
|
if fg_mask.sum():
|
|
target_bboxes /= stride_tensor
|
|
loss[0], loss[2] = self.bbox_loss(
|
|
pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
|
|
)
|
|
|
|
loss[0] *= self.hyp.box
|
|
loss[1] *= self.hyp.cls
|
|
loss[2] *= self.hyp.dfl
|
|
|
|
return loss.sum() * batch_size, loss.detach()
|
|
|
|
|
|
class v8SegmentationLoss(v8DetectionLoss):
|
|
"""Criterion class for computing training losses."""
|
|
|
|
def __init__(self, model):
|
|
"""Initializes the v8SegmentationLoss class, taking a de-paralleled model as argument."""
|
|
super().__init__(model)
|
|
self.overlap = model.args.overlap_mask
|
|
|
|
def __call__(self, preds, batch):
|
|
"""Calculate and return the loss for the YOLO model."""
|
|
loss = torch.zeros(4, device=self.device)
|
|
feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
|
|
batch_size, _, mask_h, mask_w = proto.shape
|
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
|
(self.reg_max * 4, self.nc), 1
|
|
)
|
|
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
|
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
|
|
|
|
dtype = pred_scores.dtype
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
|
|
|
|
|
try:
|
|
batch_idx = batch["batch_idx"].view(-1, 1)
|
|
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
|
gt_labels, gt_bboxes = targets.split((1, 4), 2)
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0)
|
|
except RuntimeError as e:
|
|
raise TypeError(
|
|
"ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n"
|
|
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
|
|
"i.e. 'yolo train model=yolov8n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
|
|
"correctly formatted 'segment' dataset using 'data=coco8-seg.yaml' "
|
|
"as an example.\nSee https://docs.ultralytics.com/datasets/segment/ for help."
|
|
) from e
|
|
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri)
|
|
|
|
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
|
|
pred_scores.detach().sigmoid(),
|
|
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
|
anchor_points * stride_tensor,
|
|
gt_labels,
|
|
gt_bboxes,
|
|
mask_gt,
|
|
)
|
|
|
|
target_scores_sum = max(target_scores.sum(), 1)
|
|
|
|
|
|
|
|
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum
|
|
|
|
if fg_mask.sum():
|
|
|
|
loss[0], loss[3] = self.bbox_loss(
|
|
pred_distri,
|
|
pred_bboxes,
|
|
anchor_points,
|
|
target_bboxes / stride_tensor,
|
|
target_scores,
|
|
target_scores_sum,
|
|
fg_mask,
|
|
)
|
|
|
|
masks = batch["masks"].to(self.device).float()
|
|
if tuple(masks.shape[-2:]) != (mask_h, mask_w):
|
|
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
|
|
|
|
loss[1] = self.calculate_segmentation_loss(
|
|
fg_mask, masks, target_gt_idx, target_bboxes, batch_idx, proto, pred_masks, imgsz, self.overlap
|
|
)
|
|
|
|
|
|
else:
|
|
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum()
|
|
|
|
loss[0] *= self.hyp.box
|
|
loss[1] *= self.hyp.box
|
|
loss[2] *= self.hyp.cls
|
|
loss[3] *= self.hyp.dfl
|
|
|
|
return loss.sum() * batch_size, loss.detach()
|
|
|
|
@staticmethod
|
|
def single_mask_loss(
|
|
gt_mask: torch.Tensor, pred: torch.Tensor, proto: torch.Tensor, xyxy: torch.Tensor, area: torch.Tensor
|
|
) -> torch.Tensor:
|
|
"""
|
|
Compute the instance segmentation loss for a single image.
|
|
|
|
Args:
|
|
gt_mask (torch.Tensor): Ground truth mask of shape (n, H, W), where n is the number of objects.
|
|
pred (torch.Tensor): Predicted mask coefficients of shape (n, 32).
|
|
proto (torch.Tensor): Prototype masks of shape (32, H, W).
|
|
xyxy (torch.Tensor): Ground truth bounding boxes in xyxy format, normalized to [0, 1], of shape (n, 4).
|
|
area (torch.Tensor): Area of each ground truth bounding box of shape (n,).
|
|
|
|
Returns:
|
|
(torch.Tensor): The calculated mask loss for a single image.
|
|
|
|
Notes:
|
|
The function uses the equation pred_mask = torch.einsum('in,nhw->ihw', pred, proto) to produce the
|
|
predicted masks from the prototype masks and predicted mask coefficients.
|
|
"""
|
|
pred_mask = torch.einsum("in,nhw->ihw", pred, proto)
|
|
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
|
|
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).sum()
|
|
|
|
def calculate_segmentation_loss(
|
|
self,
|
|
fg_mask: torch.Tensor,
|
|
masks: torch.Tensor,
|
|
target_gt_idx: torch.Tensor,
|
|
target_bboxes: torch.Tensor,
|
|
batch_idx: torch.Tensor,
|
|
proto: torch.Tensor,
|
|
pred_masks: torch.Tensor,
|
|
imgsz: torch.Tensor,
|
|
overlap: bool,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Calculate the loss for instance segmentation.
|
|
|
|
Args:
|
|
fg_mask (torch.Tensor): A binary tensor of shape (BS, N_anchors) indicating which anchors are positive.
|
|
masks (torch.Tensor): Ground truth masks of shape (BS, H, W) if `overlap` is False, otherwise (BS, ?, H, W).
|
|
target_gt_idx (torch.Tensor): Indexes of ground truth objects for each anchor of shape (BS, N_anchors).
|
|
target_bboxes (torch.Tensor): Ground truth bounding boxes for each anchor of shape (BS, N_anchors, 4).
|
|
batch_idx (torch.Tensor): Batch indices of shape (N_labels_in_batch, 1).
|
|
proto (torch.Tensor): Prototype masks of shape (BS, 32, H, W).
|
|
pred_masks (torch.Tensor): Predicted masks for each anchor of shape (BS, N_anchors, 32).
|
|
imgsz (torch.Tensor): Size of the input image as a tensor of shape (2), i.e., (H, W).
|
|
overlap (bool): Whether the masks in `masks` tensor overlap.
|
|
|
|
Returns:
|
|
(torch.Tensor): The calculated loss for instance segmentation.
|
|
|
|
Notes:
|
|
The batch loss can be computed for improved speed at higher memory usage.
|
|
For example, pred_mask can be computed as follows:
|
|
pred_mask = torch.einsum('in,nhw->ihw', pred, proto) # (i, 32) @ (32, 160, 160) -> (i, 160, 160)
|
|
"""
|
|
_, _, mask_h, mask_w = proto.shape
|
|
loss = 0
|
|
|
|
|
|
target_bboxes_normalized = target_bboxes / imgsz[[1, 0, 1, 0]]
|
|
|
|
|
|
marea = xyxy2xywh(target_bboxes_normalized)[..., 2:].prod(2)
|
|
|
|
|
|
mxyxy = target_bboxes_normalized * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=proto.device)
|
|
|
|
for i, single_i in enumerate(zip(fg_mask, target_gt_idx, pred_masks, proto, mxyxy, marea, masks)):
|
|
fg_mask_i, target_gt_idx_i, pred_masks_i, proto_i, mxyxy_i, marea_i, masks_i = single_i
|
|
if fg_mask_i.any():
|
|
mask_idx = target_gt_idx_i[fg_mask_i]
|
|
if overlap:
|
|
gt_mask = masks_i == (mask_idx + 1).view(-1, 1, 1)
|
|
gt_mask = gt_mask.float()
|
|
else:
|
|
gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
|
|
|
|
loss += self.single_mask_loss(
|
|
gt_mask, pred_masks_i[fg_mask_i], proto_i, mxyxy_i[fg_mask_i], marea_i[fg_mask_i]
|
|
)
|
|
|
|
|
|
else:
|
|
loss += (proto * 0).sum() + (pred_masks * 0).sum()
|
|
|
|
return loss / fg_mask.sum()
|
|
|
|
|
|
class v8PoseLoss(v8DetectionLoss):
|
|
"""Criterion class for computing training losses."""
|
|
|
|
def __init__(self, model):
|
|
"""Initializes v8PoseLoss with model, sets keypoint variables and declares a keypoint loss instance."""
|
|
super().__init__(model)
|
|
self.kpt_shape = model.model[-1].kpt_shape
|
|
self.bce_pose = nn.BCEWithLogitsLoss()
|
|
is_pose = self.kpt_shape == [17, 3]
|
|
nkpt = self.kpt_shape[0]
|
|
sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
|
|
self.keypoint_loss = KeypointLoss(sigmas=sigmas)
|
|
|
|
def __call__(self, preds, batch):
|
|
"""Calculate the total loss and detach it."""
|
|
loss = torch.zeros(5, device=self.device)
|
|
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
|
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
|
(self.reg_max * 4, self.nc), 1
|
|
)
|
|
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
|
pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()
|
|
|
|
dtype = pred_scores.dtype
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
|
|
|
|
|
batch_size = pred_scores.shape[0]
|
|
batch_idx = batch["batch_idx"].view(-1, 1)
|
|
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
|
gt_labels, gt_bboxes = targets.split((1, 4), 2)
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0)
|
|
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri)
|
|
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape))
|
|
|
|
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
|
|
pred_scores.detach().sigmoid(),
|
|
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
|
anchor_points * stride_tensor,
|
|
gt_labels,
|
|
gt_bboxes,
|
|
mask_gt,
|
|
)
|
|
|
|
target_scores_sum = max(target_scores.sum(), 1)
|
|
|
|
|
|
|
|
loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum
|
|
|
|
|
|
if fg_mask.sum():
|
|
target_bboxes /= stride_tensor
|
|
loss[0], loss[4] = self.bbox_loss(
|
|
pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
|
|
)
|
|
keypoints = batch["keypoints"].to(self.device).float().clone()
|
|
keypoints[..., 0] *= imgsz[1]
|
|
keypoints[..., 1] *= imgsz[0]
|
|
|
|
loss[1], loss[2] = self.calculate_keypoints_loss(
|
|
fg_mask, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
|
|
)
|
|
|
|
loss[0] *= self.hyp.box
|
|
loss[1] *= self.hyp.pose
|
|
loss[2] *= self.hyp.kobj
|
|
loss[3] *= self.hyp.cls
|
|
loss[4] *= self.hyp.dfl
|
|
|
|
return loss.sum() * batch_size, loss.detach()
|
|
|
|
@staticmethod
|
|
def kpts_decode(anchor_points, pred_kpts):
|
|
"""Decodes predicted keypoints to image coordinates."""
|
|
y = pred_kpts.clone()
|
|
y[..., :2] *= 2.0
|
|
y[..., 0] += anchor_points[:, [0]] - 0.5
|
|
y[..., 1] += anchor_points[:, [1]] - 0.5
|
|
return y
|
|
|
|
def calculate_keypoints_loss(
|
|
self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
|
|
):
|
|
"""
|
|
Calculate the keypoints loss for the model.
|
|
|
|
This function calculates the keypoints loss and keypoints object loss for a given batch. The keypoints loss is
|
|
based on the difference between the predicted keypoints and ground truth keypoints. The keypoints object loss is
|
|
a binary classification loss that classifies whether a keypoint is present or not.
|
|
|
|
Args:
|
|
masks (torch.Tensor): Binary mask tensor indicating object presence, shape (BS, N_anchors).
|
|
target_gt_idx (torch.Tensor): Index tensor mapping anchors to ground truth objects, shape (BS, N_anchors).
|
|
keypoints (torch.Tensor): Ground truth keypoints, shape (N_kpts_in_batch, N_kpts_per_object, kpts_dim).
|
|
batch_idx (torch.Tensor): Batch index tensor for keypoints, shape (N_kpts_in_batch, 1).
|
|
stride_tensor (torch.Tensor): Stride tensor for anchors, shape (N_anchors, 1).
|
|
target_bboxes (torch.Tensor): Ground truth boxes in (x1, y1, x2, y2) format, shape (BS, N_anchors, 4).
|
|
pred_kpts (torch.Tensor): Predicted keypoints, shape (BS, N_anchors, N_kpts_per_object, kpts_dim).
|
|
|
|
Returns:
|
|
(tuple): Returns a tuple containing:
|
|
- kpts_loss (torch.Tensor): The keypoints loss.
|
|
- kpts_obj_loss (torch.Tensor): The keypoints object loss.
|
|
"""
|
|
batch_idx = batch_idx.flatten()
|
|
batch_size = len(masks)
|
|
|
|
|
|
max_kpts = torch.unique(batch_idx, return_counts=True)[1].max()
|
|
|
|
|
|
batched_keypoints = torch.zeros(
|
|
(batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]), device=keypoints.device
|
|
)
|
|
|
|
|
|
|
|
for i in range(batch_size):
|
|
keypoints_i = keypoints[batch_idx == i]
|
|
batched_keypoints[i, : keypoints_i.shape[0]] = keypoints_i
|
|
|
|
|
|
target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1)
|
|
|
|
|
|
selected_keypoints = batched_keypoints.gather(
|
|
1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2])
|
|
)
|
|
|
|
|
|
selected_keypoints /= stride_tensor.view(1, -1, 1, 1)
|
|
|
|
kpts_loss = 0
|
|
kpts_obj_loss = 0
|
|
|
|
if masks.any():
|
|
gt_kpt = selected_keypoints[masks]
|
|
area = xyxy2xywh(target_bboxes[masks])[:, 2:].prod(1, keepdim=True)
|
|
pred_kpt = pred_kpts[masks]
|
|
kpt_mask = gt_kpt[..., 2] != 0 if gt_kpt.shape[-1] == 3 else torch.full_like(gt_kpt[..., 0], True)
|
|
kpts_loss = self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area)
|
|
|
|
if pred_kpt.shape[-1] == 3:
|
|
kpts_obj_loss = self.bce_pose(pred_kpt[..., 2], kpt_mask.float())
|
|
|
|
return kpts_loss, kpts_obj_loss
|
|
|
|
|
|
class v8ClassificationLoss:
|
|
"""Criterion class for computing training losses."""
|
|
|
|
def __call__(self, preds, batch):
|
|
"""Compute the classification loss between predictions and true labels."""
|
|
loss = F.cross_entropy(preds, batch["cls"], reduction="mean")
|
|
loss_items = loss.detach()
|
|
return loss, loss_items
|
|
|
|
|
|
class v8OBBLoss(v8DetectionLoss):
|
|
"""Calculates losses for object detection, classification, and box distribution in rotated YOLO models."""
|
|
|
|
def __init__(self, model):
|
|
"""Initializes v8OBBLoss with model, assigner, and rotated bbox loss; note model must be de-paralleled."""
|
|
super().__init__(model)
|
|
self.assigner = RotatedTaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
|
|
self.bbox_loss = RotatedBboxLoss(self.reg_max).to(self.device)
|
|
|
|
def preprocess(self, targets, batch_size, scale_tensor):
|
|
"""Preprocesses the target counts and matches with the input batch size to output a tensor."""
|
|
if targets.shape[0] == 0:
|
|
out = torch.zeros(batch_size, 0, 6, device=self.device)
|
|
else:
|
|
i = targets[:, 0]
|
|
_, counts = i.unique(return_counts=True)
|
|
counts = counts.to(dtype=torch.int32)
|
|
out = torch.zeros(batch_size, counts.max(), 6, device=self.device)
|
|
for j in range(batch_size):
|
|
matches = i == j
|
|
n = matches.sum()
|
|
if n:
|
|
bboxes = targets[matches, 2:]
|
|
bboxes[..., :4].mul_(scale_tensor)
|
|
out[j, :n] = torch.cat([targets[matches, 1:2], bboxes], dim=-1)
|
|
return out
|
|
|
|
def __call__(self, preds, batch):
|
|
"""Calculate and return the loss for the YOLO model."""
|
|
loss = torch.zeros(3, device=self.device)
|
|
feats, pred_angle = preds if isinstance(preds[0], list) else preds[1]
|
|
batch_size = pred_angle.shape[0]
|
|
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
|
(self.reg_max * 4, self.nc), 1
|
|
)
|
|
|
|
|
|
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
|
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
|
pred_angle = pred_angle.permute(0, 2, 1).contiguous()
|
|
|
|
dtype = pred_scores.dtype
|
|
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]
|
|
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
|
|
|
|
|
try:
|
|
batch_idx = batch["batch_idx"].view(-1, 1)
|
|
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"].view(-1, 5)), 1)
|
|
rw, rh = targets[:, 4] * imgsz[0].item(), targets[:, 5] * imgsz[1].item()
|
|
targets = targets[(rw >= 2) & (rh >= 2)]
|
|
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
|
gt_labels, gt_bboxes = targets.split((1, 5), 2)
|
|
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0)
|
|
except RuntimeError as e:
|
|
raise TypeError(
|
|
"ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n"
|
|
"This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
|
|
"i.e. 'yolo train model=yolov8n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
|
|
"correctly formatted 'OBB' dataset using 'data=dota8.yaml' "
|
|
"as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help."
|
|
) from e
|
|
|
|
|
|
pred_bboxes = self.bbox_decode(anchor_points, pred_distri, pred_angle)
|
|
|
|
bboxes_for_assigner = pred_bboxes.clone().detach()
|
|
|
|
bboxes_for_assigner[..., :4] *= stride_tensor
|
|
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
|
|
pred_scores.detach().sigmoid(),
|
|
bboxes_for_assigner.type(gt_bboxes.dtype),
|
|
anchor_points * stride_tensor,
|
|
gt_labels,
|
|
gt_bboxes,
|
|
mask_gt,
|
|
)
|
|
|
|
target_scores_sum = max(target_scores.sum(), 1)
|
|
|
|
|
|
|
|
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum
|
|
|
|
|
|
if fg_mask.sum():
|
|
target_bboxes[..., :4] /= stride_tensor
|
|
loss[0], loss[2] = self.bbox_loss(
|
|
pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
|
|
)
|
|
else:
|
|
loss[0] += (pred_angle * 0).sum()
|
|
|
|
loss[0] *= self.hyp.box
|
|
loss[1] *= self.hyp.cls
|
|
loss[2] *= self.hyp.dfl
|
|
|
|
return loss.sum() * batch_size, loss.detach()
|
|
|
|
def bbox_decode(self, anchor_points, pred_dist, pred_angle):
|
|
"""
|
|
Decode predicted object bounding box coordinates from anchor points and distribution.
|
|
|
|
Args:
|
|
anchor_points (torch.Tensor): Anchor points, (h*w, 2).
|
|
pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4).
|
|
pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1).
|
|
|
|
Returns:
|
|
(torch.Tensor): Predicted rotated bounding boxes with angles, (bs, h*w, 5).
|
|
"""
|
|
if self.use_dfl:
|
|
b, a, c = pred_dist.shape
|
|
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
|
return torch.cat((dist2rbox(pred_dist, pred_angle, anchor_points), pred_angle), dim=-1)
|
|
|
|
|
|
class E2EDetectLoss:
|
|
"""Criterion class for computing training losses."""
|
|
|
|
def __init__(self, model):
|
|
"""Initialize E2EDetectLoss with one-to-many and one-to-one detection losses using the provided model."""
|
|
self.one2many = v8DetectionLoss(model, tal_topk=10)
|
|
self.one2one = v8DetectionLoss(model, tal_topk=1)
|
|
|
|
def __call__(self, preds, batch):
|
|
"""Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
|
|
preds = preds[1] if isinstance(preds, tuple) else preds
|
|
one2many = preds["one2many"]
|
|
loss_one2many = self.one2many(one2many, batch)
|
|
one2one = preds["one2one"]
|
|
loss_one2one = self.one2one(one2one, batch)
|
|
return loss_one2many[0] + loss_one2one[0], loss_one2many[1] + loss_one2one[1]
|
|
|