|
|
|
|
|
import glob
|
|
import inspect
|
|
import math
|
|
import os
|
|
import platform
|
|
import re
|
|
import shutil
|
|
import subprocess
|
|
import time
|
|
from importlib import metadata
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import requests
|
|
import torch
|
|
|
|
from ultralytics.utils import (
|
|
ASSETS,
|
|
AUTOINSTALL,
|
|
IS_COLAB,
|
|
IS_GIT_DIR,
|
|
IS_JUPYTER,
|
|
IS_KAGGLE,
|
|
IS_PIP_PACKAGE,
|
|
LINUX,
|
|
LOGGER,
|
|
MACOS,
|
|
ONLINE,
|
|
PYTHON_VERSION,
|
|
ROOT,
|
|
TORCHVISION_VERSION,
|
|
USER_CONFIG_DIR,
|
|
WINDOWS,
|
|
Retry,
|
|
SimpleNamespace,
|
|
ThreadingLocked,
|
|
TryExcept,
|
|
clean_url,
|
|
colorstr,
|
|
downloads,
|
|
emojis,
|
|
is_github_action_running,
|
|
url2file,
|
|
)
|
|
|
|
|
|
def parse_requirements(file_path=ROOT.parent / "requirements.txt", package=""):
|
|
"""
|
|
Parse a requirements.txt file, ignoring lines that start with '#' and any text after '#'.
|
|
|
|
Args:
|
|
file_path (Path): Path to the requirements.txt file.
|
|
package (str, optional): Python package to use instead of requirements.txt file, i.e. package='ultralytics'.
|
|
|
|
Returns:
|
|
(List[Dict[str, str]]): List of parsed requirements as dictionaries with `name` and `specifier` keys.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.utils.checks import parse_requirements
|
|
|
|
parse_requirements(package="ultralytics")
|
|
```
|
|
"""
|
|
if package:
|
|
requires = [x for x in metadata.distribution(package).requires if "extra == " not in x]
|
|
else:
|
|
requires = Path(file_path).read_text().splitlines()
|
|
|
|
requirements = []
|
|
for line in requires:
|
|
line = line.strip()
|
|
if line and not line.startswith("#"):
|
|
line = line.split("#")[0].strip()
|
|
match = re.match(r"([a-zA-Z0-9-_]+)\s*([<>!=~]+.*)?", line)
|
|
if match:
|
|
requirements.append(SimpleNamespace(name=match[1], specifier=match[2].strip() if match[2] else ""))
|
|
|
|
return requirements
|
|
|
|
|
|
def parse_version(version="0.0.0") -> tuple:
|
|
"""
|
|
Convert a version string to a tuple of integers, ignoring any extra non-numeric string attached to the version. This
|
|
function replaces deprecated 'pkg_resources.parse_version(v)'.
|
|
|
|
Args:
|
|
version (str): Version string, i.e. '2.0.1+cpu'
|
|
|
|
Returns:
|
|
(tuple): Tuple of integers representing the numeric part of the version and the extra string, i.e. (2, 0, 1)
|
|
"""
|
|
try:
|
|
return tuple(map(int, re.findall(r"\d+", version)[:3]))
|
|
except Exception as e:
|
|
LOGGER.warning(f"WARNING ⚠️ failure for parse_version({version}), returning (0, 0, 0): {e}")
|
|
return 0, 0, 0
|
|
|
|
|
|
def is_ascii(s) -> bool:
|
|
"""
|
|
Check if a string is composed of only ASCII characters.
|
|
|
|
Args:
|
|
s (str): String to be checked.
|
|
|
|
Returns:
|
|
(bool): True if the string is composed only of ASCII characters, False otherwise.
|
|
"""
|
|
|
|
s = str(s)
|
|
|
|
|
|
return all(ord(c) < 128 for c in s)
|
|
|
|
|
|
def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
|
|
"""
|
|
Verify image size is a multiple of the given stride in each dimension. If the image size is not a multiple of the
|
|
stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value.
|
|
|
|
Args:
|
|
imgsz (int | cList[int]): Image size.
|
|
stride (int): Stride value.
|
|
min_dim (int): Minimum number of dimensions.
|
|
max_dim (int): Maximum number of dimensions.
|
|
floor (int): Minimum allowed value for image size.
|
|
|
|
Returns:
|
|
(List[int]): Updated image size.
|
|
"""
|
|
|
|
stride = int(stride.max() if isinstance(stride, torch.Tensor) else stride)
|
|
|
|
|
|
if isinstance(imgsz, int):
|
|
imgsz = [imgsz]
|
|
elif isinstance(imgsz, (list, tuple)):
|
|
imgsz = list(imgsz)
|
|
elif isinstance(imgsz, str):
|
|
imgsz = [int(imgsz)] if imgsz.isnumeric() else eval(imgsz)
|
|
else:
|
|
raise TypeError(
|
|
f"'imgsz={imgsz}' is of invalid type {type(imgsz).__name__}. "
|
|
f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'"
|
|
)
|
|
|
|
|
|
if len(imgsz) > max_dim:
|
|
msg = (
|
|
"'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list "
|
|
"or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'"
|
|
)
|
|
if max_dim != 1:
|
|
raise ValueError(f"imgsz={imgsz} is not a valid image size. {msg}")
|
|
LOGGER.warning(f"WARNING ⚠️ updating to 'imgsz={max(imgsz)}'. {msg}")
|
|
imgsz = [max(imgsz)]
|
|
|
|
sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz]
|
|
|
|
|
|
if sz != imgsz:
|
|
LOGGER.warning(f"WARNING ⚠️ imgsz={imgsz} must be multiple of max stride {stride}, updating to {sz}")
|
|
|
|
|
|
sz = [sz[0], sz[0]] if min_dim == 2 and len(sz) == 1 else sz[0] if min_dim == 1 and len(sz) == 1 else sz
|
|
|
|
return sz
|
|
|
|
|
|
def check_version(
|
|
current: str = "0.0.0",
|
|
required: str = "0.0.0",
|
|
name: str = "version",
|
|
hard: bool = False,
|
|
verbose: bool = False,
|
|
msg: str = "",
|
|
) -> bool:
|
|
"""
|
|
Check current version against the required version or range.
|
|
|
|
Args:
|
|
current (str): Current version or package name to get version from.
|
|
required (str): Required version or range (in pip-style format).
|
|
name (str, optional): Name to be used in warning message.
|
|
hard (bool, optional): If True, raise an AssertionError if the requirement is not met.
|
|
verbose (bool, optional): If True, print warning message if requirement is not met.
|
|
msg (str, optional): Extra message to display if verbose.
|
|
|
|
Returns:
|
|
(bool): True if requirement is met, False otherwise.
|
|
|
|
Example:
|
|
```python
|
|
# Check if current version is exactly 22.04
|
|
check_version(current="22.04", required="==22.04")
|
|
|
|
# Check if current version is greater than or equal to 22.04
|
|
check_version(current="22.10", required="22.04") # assumes '>=' inequality if none passed
|
|
|
|
# Check if current version is less than or equal to 22.04
|
|
check_version(current="22.04", required="<=22.04")
|
|
|
|
# Check if current version is between 20.04 (inclusive) and 22.04 (exclusive)
|
|
check_version(current="21.10", required=">20.04,<22.04")
|
|
```
|
|
"""
|
|
if not current:
|
|
LOGGER.warning(f"WARNING ⚠️ invalid check_version({current}, {required}) requested, please check values.")
|
|
return True
|
|
elif not current[0].isdigit():
|
|
try:
|
|
name = current
|
|
current = metadata.version(current)
|
|
except metadata.PackageNotFoundError as e:
|
|
if hard:
|
|
raise ModuleNotFoundError(emojis(f"WARNING ⚠️ {current} package is required but not installed")) from e
|
|
else:
|
|
return False
|
|
|
|
if not required:
|
|
return True
|
|
|
|
if "sys_platform" in required and (
|
|
(WINDOWS and "win32" not in required)
|
|
or (LINUX and "linux" not in required)
|
|
or (MACOS and "macos" not in required and "darwin" not in required)
|
|
):
|
|
return True
|
|
|
|
op = ""
|
|
version = ""
|
|
result = True
|
|
c = parse_version(current)
|
|
for r in required.strip(",").split(","):
|
|
op, version = re.match(r"([^0-9]*)([\d.]+)", r).groups()
|
|
if not op:
|
|
op = ">="
|
|
v = parse_version(version)
|
|
if op == "==" and c != v:
|
|
result = False
|
|
elif op == "!=" and c == v:
|
|
result = False
|
|
elif op == ">=" and not (c >= v):
|
|
result = False
|
|
elif op == "<=" and not (c <= v):
|
|
result = False
|
|
elif op == ">" and not (c > v):
|
|
result = False
|
|
elif op == "<" and not (c < v):
|
|
result = False
|
|
if not result:
|
|
warning = f"WARNING ⚠️ {name}{op}{version} is required, but {name}=={current} is currently installed {msg}"
|
|
if hard:
|
|
raise ModuleNotFoundError(emojis(warning))
|
|
if verbose:
|
|
LOGGER.warning(warning)
|
|
return result
|
|
|
|
|
|
def check_latest_pypi_version(package_name="ultralytics"):
|
|
"""
|
|
Returns the latest version of a PyPI package without downloading or installing it.
|
|
|
|
Args:
|
|
package_name (str): The name of the package to find the latest version for.
|
|
|
|
Returns:
|
|
(str): The latest version of the package.
|
|
"""
|
|
try:
|
|
requests.packages.urllib3.disable_warnings()
|
|
response = requests.get(f"https://pypi.org/pypi/{package_name}/json", timeout=3)
|
|
if response.status_code == 200:
|
|
return response.json()["info"]["version"]
|
|
except:
|
|
return None
|
|
|
|
|
|
def check_pip_update_available():
|
|
"""
|
|
Checks if a new version of the ultralytics package is available on PyPI.
|
|
|
|
Returns:
|
|
(bool): True if an update is available, False otherwise.
|
|
"""
|
|
if ONLINE and IS_PIP_PACKAGE:
|
|
try:
|
|
from ultralytics import __version__
|
|
|
|
latest = check_latest_pypi_version()
|
|
if check_version(__version__, f"<{latest}"):
|
|
LOGGER.info(
|
|
f"New https://pypi.org/project/ultralytics/{latest} available 😃 "
|
|
f"Update with 'pip install -U ultralytics'"
|
|
)
|
|
return True
|
|
except:
|
|
pass
|
|
return False
|
|
|
|
|
|
@ThreadingLocked()
|
|
def check_font(font="Arial.ttf"):
|
|
"""
|
|
Find font locally or download to user's configuration directory if it does not already exist.
|
|
|
|
Args:
|
|
font (str): Path or name of font.
|
|
|
|
Returns:
|
|
file (Path): Resolved font file path.
|
|
"""
|
|
from matplotlib import font_manager
|
|
|
|
|
|
name = Path(font).name
|
|
file = USER_CONFIG_DIR / name
|
|
if file.exists():
|
|
return file
|
|
|
|
|
|
matches = [s for s in font_manager.findSystemFonts() if font in s]
|
|
if any(matches):
|
|
return matches[0]
|
|
|
|
|
|
url = f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{name}"
|
|
if downloads.is_url(url, check=True):
|
|
downloads.safe_download(url=url, file=file)
|
|
return file
|
|
|
|
|
|
def check_python(minimum: str = "3.8.0", hard: bool = True, verbose: bool = True) -> bool:
|
|
"""
|
|
Check current python version against the required minimum version.
|
|
|
|
Args:
|
|
minimum (str): Required minimum version of python.
|
|
hard (bool, optional): If True, raise an AssertionError if the requirement is not met.
|
|
verbose (bool, optional): If True, print warning message if requirement is not met.
|
|
|
|
Returns:
|
|
(bool): Whether the installed Python version meets the minimum constraints.
|
|
"""
|
|
return check_version(PYTHON_VERSION, minimum, name="Python", hard=hard, verbose=verbose)
|
|
|
|
|
|
@TryExcept()
|
|
def check_requirements(requirements=ROOT.parent / "requirements.txt", exclude=(), install=True, cmds=""):
|
|
"""
|
|
Check if installed dependencies meet YOLOv8 requirements and attempt to auto-update if needed.
|
|
|
|
Args:
|
|
requirements (Union[Path, str, List[str]]): Path to a requirements.txt file, a single package requirement as a
|
|
string, or a list of package requirements as strings.
|
|
exclude (Tuple[str]): Tuple of package names to exclude from checking.
|
|
install (bool): If True, attempt to auto-update packages that don't meet requirements.
|
|
cmds (str): Additional commands to pass to the pip install command when auto-updating.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.utils.checks import check_requirements
|
|
|
|
# Check a requirements.txt file
|
|
check_requirements("path/to/requirements.txt")
|
|
|
|
# Check a single package
|
|
check_requirements("ultralytics>=8.0.0")
|
|
|
|
# Check multiple packages
|
|
check_requirements(["numpy", "ultralytics>=8.0.0"])
|
|
```
|
|
"""
|
|
prefix = colorstr("red", "bold", "requirements:")
|
|
if isinstance(requirements, Path):
|
|
file = requirements.resolve()
|
|
assert file.exists(), f"{prefix} {file} not found, check failed."
|
|
requirements = [f"{x.name}{x.specifier}" for x in parse_requirements(file) if x.name not in exclude]
|
|
elif isinstance(requirements, str):
|
|
requirements = [requirements]
|
|
|
|
pkgs = []
|
|
for r in requirements:
|
|
r_stripped = r.split("/")[-1].replace(".git", "")
|
|
match = re.match(r"([a-zA-Z0-9-_]+)([<>!=~]+.*)?", r_stripped)
|
|
name, required = match[1], match[2].strip() if match[2] else ""
|
|
try:
|
|
assert check_version(metadata.version(name), required)
|
|
except (AssertionError, metadata.PackageNotFoundError):
|
|
pkgs.append(r)
|
|
|
|
@Retry(times=2, delay=1)
|
|
def attempt_install(packages, commands):
|
|
"""Attempt pip install command with retries on failure."""
|
|
return subprocess.check_output(f"pip install --no-cache-dir {packages} {commands}", shell=True).decode()
|
|
|
|
s = " ".join(f'"{x}"' for x in pkgs)
|
|
if s:
|
|
if install and AUTOINSTALL:
|
|
n = len(pkgs)
|
|
LOGGER.info(f"{prefix} Ultralytics requirement{'s' * (n > 1)} {pkgs} not found, attempting AutoUpdate...")
|
|
try:
|
|
t = time.time()
|
|
assert ONLINE, "AutoUpdate skipped (offline)"
|
|
LOGGER.info(attempt_install(s, cmds))
|
|
dt = time.time() - t
|
|
LOGGER.info(
|
|
f"{prefix} AutoUpdate success ✅ {dt:.1f}s, installed {n} package{'s' * (n > 1)}: {pkgs}\n"
|
|
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
|
)
|
|
except Exception as e:
|
|
LOGGER.warning(f"{prefix} ❌ {e}")
|
|
return False
|
|
else:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def check_torchvision():
|
|
"""
|
|
Checks the installed versions of PyTorch and Torchvision to ensure they're compatible.
|
|
|
|
This function checks the installed versions of PyTorch and Torchvision, and warns if they're incompatible according
|
|
to the provided compatibility table based on:
|
|
https://github.com/pytorch/vision#installation.
|
|
|
|
The compatibility table is a dictionary where the keys are PyTorch versions and the values are lists of compatible
|
|
Torchvision versions.
|
|
"""
|
|
|
|
compatibility_table = {
|
|
"2.4": ["0.19"],
|
|
"2.3": ["0.18"],
|
|
"2.2": ["0.17"],
|
|
"2.1": ["0.16"],
|
|
"2.0": ["0.15"],
|
|
"1.13": ["0.14"],
|
|
"1.12": ["0.13"],
|
|
}
|
|
|
|
|
|
v_torch = ".".join(torch.__version__.split("+")[0].split(".")[:2])
|
|
if v_torch in compatibility_table:
|
|
compatible_versions = compatibility_table[v_torch]
|
|
v_torchvision = ".".join(TORCHVISION_VERSION.split("+")[0].split(".")[:2])
|
|
if all(v_torchvision != v for v in compatible_versions):
|
|
print(
|
|
f"WARNING ⚠️ torchvision=={v_torchvision} is incompatible with torch=={v_torch}.\n"
|
|
f"Run 'pip install torchvision=={compatible_versions[0]}' to fix torchvision or "
|
|
"'pip install -U torch torchvision' to update both.\n"
|
|
"For a full compatibility table see https://github.com/pytorch/vision#installation"
|
|
)
|
|
|
|
|
|
def check_suffix(file="yolo11n.pt", suffix=".pt", msg=""):
|
|
"""Check file(s) for acceptable suffix."""
|
|
if file and suffix:
|
|
if isinstance(suffix, str):
|
|
suffix = (suffix,)
|
|
for f in file if isinstance(file, (list, tuple)) else [file]:
|
|
s = Path(f).suffix.lower().strip()
|
|
if len(s):
|
|
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}, not {s}"
|
|
|
|
|
|
def check_yolov5u_filename(file: str, verbose: bool = True):
|
|
"""Replace legacy YOLOv5 filenames with updated YOLOv5u filenames."""
|
|
if "yolov3" in file or "yolov5" in file:
|
|
if "u.yaml" in file:
|
|
file = file.replace("u.yaml", ".yaml")
|
|
elif ".pt" in file and "u" not in file:
|
|
original_file = file
|
|
file = re.sub(r"(.*yolov5([nsmlx]))\.pt", "\\1u.pt", file)
|
|
file = re.sub(r"(.*yolov5([nsmlx])6)\.pt", "\\1u.pt", file)
|
|
file = re.sub(r"(.*yolov3(|-tiny|-spp))\.pt", "\\1u.pt", file)
|
|
if file != original_file and verbose:
|
|
LOGGER.info(
|
|
f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
|
|
f"trained with https://github.com/ultralytics/ultralytics and feature improved performance vs "
|
|
f"standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n"
|
|
)
|
|
return file
|
|
|
|
|
|
def check_model_file_from_stem(model="yolov8n"):
|
|
"""Return a model filename from a valid model stem."""
|
|
if model and not Path(model).suffix and Path(model).stem in downloads.GITHUB_ASSETS_STEMS:
|
|
return Path(model).with_suffix(".pt")
|
|
else:
|
|
return model
|
|
|
|
|
|
def check_file(file, suffix="", download=True, download_dir=".", hard=True):
|
|
"""Search/download file (if necessary) and return path."""
|
|
check_suffix(file, suffix)
|
|
file = str(file).strip()
|
|
file = check_yolov5u_filename(file)
|
|
if (
|
|
not file
|
|
or ("://" not in file and Path(file).exists())
|
|
or file.lower().startswith("grpc://")
|
|
):
|
|
return file
|
|
elif download and file.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")):
|
|
url = file
|
|
file = Path(download_dir) / url2file(file)
|
|
if file.exists():
|
|
LOGGER.info(f"Found {clean_url(url)} locally at {file}")
|
|
else:
|
|
downloads.safe_download(url=url, file=file, unzip=False)
|
|
return str(file)
|
|
else:
|
|
files = glob.glob(str(ROOT / "**" / file), recursive=True) or glob.glob(str(ROOT.parent / file))
|
|
if not files and hard:
|
|
raise FileNotFoundError(f"'{file}' does not exist")
|
|
elif len(files) > 1 and hard:
|
|
raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}")
|
|
return files[0] if len(files) else []
|
|
|
|
|
|
def check_yaml(file, suffix=(".yaml", ".yml"), hard=True):
|
|
"""Search/download YAML file (if necessary) and return path, checking suffix."""
|
|
return check_file(file, suffix, hard=hard)
|
|
|
|
|
|
def check_is_path_safe(basedir, path):
|
|
"""
|
|
Check if the resolved path is under the intended directory to prevent path traversal.
|
|
|
|
Args:
|
|
basedir (Path | str): The intended directory.
|
|
path (Path | str): The path to check.
|
|
|
|
Returns:
|
|
(bool): True if the path is safe, False otherwise.
|
|
"""
|
|
base_dir_resolved = Path(basedir).resolve()
|
|
path_resolved = Path(path).resolve()
|
|
|
|
return path_resolved.exists() and path_resolved.parts[: len(base_dir_resolved.parts)] == base_dir_resolved.parts
|
|
|
|
|
|
def check_imshow(warn=False):
|
|
"""Check if environment supports image displays."""
|
|
try:
|
|
if LINUX:
|
|
assert not IS_COLAB and not IS_KAGGLE
|
|
assert "DISPLAY" in os.environ, "The DISPLAY environment variable isn't set."
|
|
cv2.imshow("test", np.zeros((8, 8, 3), dtype=np.uint8))
|
|
cv2.waitKey(1)
|
|
cv2.destroyAllWindows()
|
|
cv2.waitKey(1)
|
|
return True
|
|
except Exception as e:
|
|
if warn:
|
|
LOGGER.warning(f"WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}")
|
|
return False
|
|
|
|
|
|
def check_yolo(verbose=True, device=""):
|
|
"""Return a human-readable YOLO software and hardware summary."""
|
|
import psutil
|
|
|
|
from ultralytics.utils.torch_utils import select_device
|
|
|
|
if IS_JUPYTER:
|
|
if check_requirements("wandb", install=False):
|
|
os.system("pip uninstall -y wandb")
|
|
if IS_COLAB:
|
|
shutil.rmtree("sample_data", ignore_errors=True)
|
|
|
|
if verbose:
|
|
|
|
gib = 1 << 30
|
|
ram = psutil.virtual_memory().total
|
|
total, used, free = shutil.disk_usage("/")
|
|
s = f"({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)"
|
|
try:
|
|
from IPython import display
|
|
|
|
display.clear_output()
|
|
except ImportError:
|
|
pass
|
|
else:
|
|
s = ""
|
|
|
|
select_device(device=device, newline=False)
|
|
LOGGER.info(f"Setup complete ✅ {s}")
|
|
|
|
|
|
def collect_system_info():
|
|
"""Collect and print relevant system information including OS, Python, RAM, CPU, and CUDA."""
|
|
import psutil
|
|
|
|
from ultralytics.utils import ENVIRONMENT
|
|
from ultralytics.utils.torch_utils import get_cpu_info, get_gpu_info
|
|
|
|
gib = 1 << 30
|
|
cuda = torch and torch.cuda.is_available()
|
|
check_yolo()
|
|
total, used, free = shutil.disk_usage("/")
|
|
|
|
info_dict = {
|
|
"OS": platform.platform(),
|
|
"Environment": ENVIRONMENT,
|
|
"Python": PYTHON_VERSION,
|
|
"Install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
|
|
"RAM": f"{psutil.virtual_memory().total / gib:.2f} GB",
|
|
"Disk": f"{(total - free) / gib:.1f}/{total / gib:.1f} GB",
|
|
"CPU": get_cpu_info(),
|
|
"CPU count": os.cpu_count(),
|
|
"GPU": get_gpu_info(index=0) if cuda else None,
|
|
"GPU count": torch.cuda.device_count() if cuda else None,
|
|
"CUDA": torch.version.cuda if cuda else None,
|
|
}
|
|
LOGGER.info("\n" + "\n".join(f"{k:<20}{v}" for k, v in info_dict.items()) + "\n")
|
|
|
|
package_info = {}
|
|
for r in parse_requirements(package="ultralytics"):
|
|
try:
|
|
current = metadata.version(r.name)
|
|
is_met = "✅ " if check_version(current, str(r.specifier), name=r.name, hard=True) else "❌ "
|
|
except metadata.PackageNotFoundError:
|
|
current = "(not installed)"
|
|
is_met = "❌ "
|
|
package_info[r.name] = f"{is_met}{current}{r.specifier}"
|
|
LOGGER.info(f"{r.name:<20}{package_info[r.name]}")
|
|
|
|
info_dict["Package Info"] = package_info
|
|
|
|
if is_github_action_running():
|
|
github_info = {
|
|
"RUNNER_OS": os.getenv("RUNNER_OS"),
|
|
"GITHUB_EVENT_NAME": os.getenv("GITHUB_EVENT_NAME"),
|
|
"GITHUB_WORKFLOW": os.getenv("GITHUB_WORKFLOW"),
|
|
"GITHUB_ACTOR": os.getenv("GITHUB_ACTOR"),
|
|
"GITHUB_REPOSITORY": os.getenv("GITHUB_REPOSITORY"),
|
|
"GITHUB_REPOSITORY_OWNER": os.getenv("GITHUB_REPOSITORY_OWNER"),
|
|
}
|
|
LOGGER.info("\n" + "\n".join(f"{k}: {v}" for k, v in github_info.items()))
|
|
info_dict["GitHub Info"] = github_info
|
|
|
|
return info_dict
|
|
|
|
|
|
def check_amp(model):
|
|
"""
|
|
Checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLO11 model. If the checks fail, it means
|
|
there are anomalies with AMP on the system that may cause NaN losses or zero-mAP results, so AMP will be disabled
|
|
during training.
|
|
|
|
Args:
|
|
model (nn.Module): A YOLO11 model instance.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics import YOLO
|
|
from ultralytics.utils.checks import check_amp
|
|
|
|
model = YOLO("yolo11n.pt").model.cuda()
|
|
check_amp(model)
|
|
```
|
|
|
|
Returns:
|
|
(bool): Returns True if the AMP functionality works correctly with YOLO11 model, else False.
|
|
"""
|
|
from ultralytics.utils.torch_utils import autocast
|
|
|
|
device = next(model.parameters()).device
|
|
if device.type in {"cpu", "mps"}:
|
|
return False
|
|
|
|
def amp_allclose(m, im):
|
|
"""All close FP32 vs AMP results."""
|
|
batch = [im] * 8
|
|
imgsz = max(256, int(model.stride.max() * 4))
|
|
a = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data
|
|
with autocast(enabled=True):
|
|
b = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data
|
|
del m
|
|
return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5)
|
|
|
|
im = ASSETS / "bus.jpg"
|
|
prefix = colorstr("AMP: ")
|
|
LOGGER.info(f"{prefix}running Automatic Mixed Precision (AMP) checks with YOLO11n...")
|
|
warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
|
|
try:
|
|
from ultralytics import YOLO
|
|
|
|
assert amp_allclose(YOLO("yolo11n.pt"), im)
|
|
LOGGER.info(f"{prefix}checks passed ✅")
|
|
except ConnectionError:
|
|
LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download YOLO11n. {warning_msg}")
|
|
except (AttributeError, ModuleNotFoundError):
|
|
LOGGER.warning(
|
|
f"{prefix}checks skipped ⚠️. "
|
|
f"Unable to load YOLO11n due to possible Ultralytics package modifications. {warning_msg}"
|
|
)
|
|
except AssertionError:
|
|
LOGGER.warning(
|
|
f"{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to "
|
|
f"NaN losses or zero-mAP results, so AMP will be disabled during training."
|
|
)
|
|
return False
|
|
return True
|
|
|
|
|
|
def git_describe(path=ROOT):
|
|
"""Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe."""
|
|
try:
|
|
return subprocess.check_output(f"git -C {path} describe --tags --long --always", shell=True).decode()[:-1]
|
|
except:
|
|
return ""
|
|
|
|
|
|
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
|
|
"""Print function arguments (optional args dict)."""
|
|
|
|
def strip_auth(v):
|
|
"""Clean longer Ultralytics HUB URLs by stripping potential authentication information."""
|
|
return clean_url(v) if (isinstance(v, str) and v.startswith("http") and len(v) > 100) else v
|
|
|
|
x = inspect.currentframe().f_back
|
|
file, _, func, _, _ = inspect.getframeinfo(x)
|
|
if args is None:
|
|
args, _, _, frm = inspect.getargvalues(x)
|
|
args = {k: v for k, v in frm.items() if k in args}
|
|
try:
|
|
file = Path(file).resolve().relative_to(ROOT).with_suffix("")
|
|
except ValueError:
|
|
file = Path(file).stem
|
|
s = (f"{file}: " if show_file else "") + (f"{func}: " if show_func else "")
|
|
LOGGER.info(colorstr(s) + ", ".join(f"{k}={strip_auth(v)}" for k, v in args.items()))
|
|
|
|
|
|
def cuda_device_count() -> int:
|
|
"""
|
|
Get the number of NVIDIA GPUs available in the environment.
|
|
|
|
Returns:
|
|
(int): The number of NVIDIA GPUs available.
|
|
"""
|
|
try:
|
|
|
|
output = subprocess.check_output(
|
|
["nvidia-smi", "--query-gpu=count", "--format=csv,noheader,nounits"], encoding="utf-8"
|
|
)
|
|
|
|
|
|
first_line = output.strip().split("\n")[0]
|
|
|
|
return int(first_line)
|
|
except (subprocess.CalledProcessError, FileNotFoundError, ValueError):
|
|
|
|
return 0
|
|
|
|
|
|
def cuda_is_available() -> bool:
|
|
"""
|
|
Check if CUDA is available in the environment.
|
|
|
|
Returns:
|
|
(bool): True if one or more NVIDIA GPUs are available, False otherwise.
|
|
"""
|
|
return cuda_device_count() > 0
|
|
|
|
|
|
|
|
check_python("3.8", hard=False, verbose=True)
|
|
check_torchvision()
|
|
IS_PYTHON_MINIMUM_3_10 = check_python("3.10", hard=False)
|
|
IS_PYTHON_3_12 = PYTHON_VERSION.startswith("3.12")
|
|
|