akswelh's picture
Upload 663 files
f6228f9 verified
# Ultralytics YOLO ๐Ÿš€, AGPL-3.0 license
from ultralytics.utils import SETTINGS, TESTS_RUNNING
from ultralytics.utils.torch_utils import model_info_for_loggers
try:
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS["wandb"] is True # verify integration is enabled
import wandb as wb
assert hasattr(wb, "__version__") # verify package is not directory
_processed_plots = {}
except (ImportError, AssertionError):
wb = None
def _custom_table(x, y, classes, title="Precision Recall Curve", x_title="Recall", y_title="Precision"):
"""
Create and log a custom metric visualization to wandb.plot.pr_curve.
This function crafts a custom metric visualization that mimics the behavior of the default wandb precision-recall
curve while allowing for enhanced customization. The visual metric is useful for monitoring model performance across
different classes.
Args:
x (List): Values for the x-axis; expected to have length N.
y (List): Corresponding values for the y-axis; also expected to have length N.
classes (List): Labels identifying the class of each point; length N.
title (str, optional): Title for the plot; defaults to 'Precision Recall Curve'.
x_title (str, optional): Label for the x-axis; defaults to 'Recall'.
y_title (str, optional): Label for the y-axis; defaults to 'Precision'.
Returns:
(wandb.Object): A wandb object suitable for logging, showcasing the crafted metric visualization.
"""
import pandas # scope for faster 'import ultralytics'
df = pandas.DataFrame({"class": classes, "y": y, "x": x}).round(3)
fields = {"x": "x", "y": "y", "class": "class"}
string_fields = {"title": title, "x-axis-title": x_title, "y-axis-title": y_title}
return wb.plot_table(
"wandb/area-under-curve/v0", wb.Table(dataframe=df), fields=fields, string_fields=string_fields
)
def _plot_curve(
x,
y,
names=None,
id="precision-recall",
title="Precision Recall Curve",
x_title="Recall",
y_title="Precision",
num_x=100,
only_mean=False,
):
"""
Log a metric curve visualization.
This function generates a metric curve based on input data and logs the visualization to wandb.
The curve can represent aggregated data (mean) or individual class data, depending on the 'only_mean' flag.
Args:
x (np.ndarray): Data points for the x-axis with length N.
y (np.ndarray): Corresponding data points for the y-axis with shape CxN, where C is the number of classes.
names (list, optional): Names of the classes corresponding to the y-axis data; length C. Defaults to [].
id (str, optional): Unique identifier for the logged data in wandb. Defaults to 'precision-recall'.
title (str, optional): Title for the visualization plot. Defaults to 'Precision Recall Curve'.
x_title (str, optional): Label for the x-axis. Defaults to 'Recall'.
y_title (str, optional): Label for the y-axis. Defaults to 'Precision'.
num_x (int, optional): Number of interpolated data points for visualization. Defaults to 100.
only_mean (bool, optional): Flag to indicate if only the mean curve should be plotted. Defaults to True.
Note:
The function leverages the '_custom_table' function to generate the actual visualization.
"""
import numpy as np
# Create new x
if names is None:
names = []
x_new = np.linspace(x[0], x[-1], num_x).round(5)
# Create arrays for logging
x_log = x_new.tolist()
y_log = np.interp(x_new, x, np.mean(y, axis=0)).round(3).tolist()
if only_mean:
table = wb.Table(data=list(zip(x_log, y_log)), columns=[x_title, y_title])
wb.run.log({title: wb.plot.line(table, x_title, y_title, title=title)})
else:
classes = ["mean"] * len(x_log)
for i, yi in enumerate(y):
x_log.extend(x_new) # add new x
y_log.extend(np.interp(x_new, x, yi)) # interpolate y to new x
classes.extend([names[i]] * len(x_new)) # add class names
wb.log({id: _custom_table(x_log, y_log, classes, title, x_title, y_title)}, commit=False)
def _log_plots(plots, step):
"""Logs plots from the input dictionary if they haven't been logged already at the specified step."""
for name, params in plots.copy().items(): # shallow copy to prevent plots dict changing during iteration
timestamp = params["timestamp"]
if _processed_plots.get(name) != timestamp:
wb.run.log({name.stem: wb.Image(str(name))}, step=step)
_processed_plots[name] = timestamp
def on_pretrain_routine_start(trainer):
"""Initiate and start project if module is present."""
wb.run or wb.init(project=trainer.args.project or "Ultralytics", name=trainer.args.name, config=vars(trainer.args))
def on_fit_epoch_end(trainer):
"""Logs training metrics and model information at the end of an epoch."""
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
_log_plots(trainer.plots, step=trainer.epoch + 1)
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
if trainer.epoch == 0:
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
def on_train_epoch_end(trainer):
"""Log metrics and save images at the end of each training epoch."""
wb.run.log(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1)
wb.run.log(trainer.lr, step=trainer.epoch + 1)
if trainer.epoch == 1:
_log_plots(trainer.plots, step=trainer.epoch + 1)
def on_train_end(trainer):
"""Save the best model as an artifact at end of training."""
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
_log_plots(trainer.plots, step=trainer.epoch + 1)
art = wb.Artifact(type="model", name=f"run_{wb.run.id}_model")
if trainer.best.exists():
art.add_file(trainer.best)
wb.run.log_artifact(art, aliases=["best"])
for curve_name, curve_values in zip(trainer.validator.metrics.curves, trainer.validator.metrics.curves_results):
x, y, x_title, y_title = curve_values
_plot_curve(
x,
y,
names=list(trainer.validator.metrics.names.values()),
id=f"curves/{curve_name}",
title=curve_name,
x_title=x_title,
y_title=y_title,
)
wb.run.finish() # required or run continues on dashboard
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_train_epoch_end": on_train_epoch_end,
"on_fit_epoch_end": on_fit_epoch_end,
"on_train_end": on_train_end,
}
if wb
else {}
)