|
|
|
|
|
import json
|
|
from time import time
|
|
|
|
from ultralytics.hub import HUB_WEB_ROOT, PREFIX, HUBTrainingSession, events
|
|
from ultralytics.utils import LOGGER, RANK, SETTINGS
|
|
|
|
|
|
def on_pretrain_routine_start(trainer):
|
|
"""Create a remote Ultralytics HUB session to log local model training."""
|
|
if RANK in {-1, 0} and SETTINGS["hub"] is True and SETTINGS["api_key"] and trainer.hub_session is None:
|
|
trainer.hub_session = HUBTrainingSession.create_session(trainer.args.model, trainer.args)
|
|
|
|
|
|
def on_pretrain_routine_end(trainer):
|
|
"""Logs info before starting timer for upload rate limit."""
|
|
session = getattr(trainer, "hub_session", None)
|
|
if session:
|
|
|
|
session.timers = {"metrics": time(), "ckpt": time()}
|
|
|
|
|
|
def on_fit_epoch_end(trainer):
|
|
"""Uploads training progress metrics at the end of each epoch."""
|
|
session = getattr(trainer, "hub_session", None)
|
|
if session:
|
|
|
|
all_plots = {
|
|
**trainer.label_loss_items(trainer.tloss, prefix="train"),
|
|
**trainer.metrics,
|
|
}
|
|
if trainer.epoch == 0:
|
|
from ultralytics.utils.torch_utils import model_info_for_loggers
|
|
|
|
all_plots = {**all_plots, **model_info_for_loggers(trainer)}
|
|
|
|
session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
|
|
|
|
|
|
if session.metrics_upload_failed_queue:
|
|
session.metrics_queue.update(session.metrics_upload_failed_queue)
|
|
|
|
if time() - session.timers["metrics"] > session.rate_limits["metrics"]:
|
|
session.upload_metrics()
|
|
session.timers["metrics"] = time()
|
|
session.metrics_queue = {}
|
|
|
|
|
|
def on_model_save(trainer):
|
|
"""Saves checkpoints to Ultralytics HUB with rate limiting."""
|
|
session = getattr(trainer, "hub_session", None)
|
|
if session:
|
|
|
|
is_best = trainer.best_fitness == trainer.fitness
|
|
if time() - session.timers["ckpt"] > session.rate_limits["ckpt"]:
|
|
LOGGER.info(f"{PREFIX}Uploading checkpoint {HUB_WEB_ROOT}/models/{session.model.id}")
|
|
session.upload_model(trainer.epoch, trainer.last, is_best)
|
|
session.timers["ckpt"] = time()
|
|
|
|
|
|
def on_train_end(trainer):
|
|
"""Upload final model and metrics to Ultralytics HUB at the end of training."""
|
|
session = getattr(trainer, "hub_session", None)
|
|
if session:
|
|
|
|
LOGGER.info(f"{PREFIX}Syncing final model...")
|
|
session.upload_model(
|
|
trainer.epoch,
|
|
trainer.best,
|
|
map=trainer.metrics.get("metrics/mAP50-95(B)", 0),
|
|
final=True,
|
|
)
|
|
session.alive = False
|
|
LOGGER.info(f"{PREFIX}Done β
\n" f"{PREFIX}View model at {session.model_url} π")
|
|
|
|
|
|
def on_train_start(trainer):
|
|
"""Run events on train start."""
|
|
events(trainer.args)
|
|
|
|
|
|
def on_val_start(validator):
|
|
"""Runs events on validation start."""
|
|
events(validator.args)
|
|
|
|
|
|
def on_predict_start(predictor):
|
|
"""Run events on predict start."""
|
|
events(predictor.args)
|
|
|
|
|
|
def on_export_start(exporter):
|
|
"""Run events on export start."""
|
|
events(exporter.args)
|
|
|
|
|
|
callbacks = (
|
|
{
|
|
"on_pretrain_routine_start": on_pretrain_routine_start,
|
|
"on_pretrain_routine_end": on_pretrain_routine_end,
|
|
"on_fit_epoch_end": on_fit_epoch_end,
|
|
"on_model_save": on_model_save,
|
|
"on_train_end": on_train_end,
|
|
"on_train_start": on_train_start,
|
|
"on_val_start": on_val_start,
|
|
"on_predict_start": on_predict_start,
|
|
"on_export_start": on_export_start,
|
|
}
|
|
if SETTINGS["hub"] is True
|
|
else {}
|
|
)
|
|
|