akswelh's picture
Upload 663 files
f6228f9 verified
# Ultralytics YOLO 🚀, AGPL-3.0 license
import numpy as np
from ..utils import LOGGER
from ..utils.ops import xywh2ltwh
from .basetrack import BaseTrack, TrackState
from .utils import matching
from .utils.kalman_filter import KalmanFilterXYAH
class STrack(BaseTrack):
"""
Single object tracking representation that uses Kalman filtering for state estimation.
This class is responsible for storing all the information regarding individual tracklets and performs state updates
and predictions based on Kalman filter.
Attributes:
shared_kalman (KalmanFilterXYAH): Shared Kalman filter that is used across all STrack instances for prediction.
_tlwh (np.ndarray): Private attribute to store top-left corner coordinates and width and height of bounding box.
kalman_filter (KalmanFilterXYAH): Instance of Kalman filter used for this particular object track.
mean (np.ndarray): Mean state estimate vector.
covariance (np.ndarray): Covariance of state estimate.
is_activated (bool): Boolean flag indicating if the track has been activated.
score (float): Confidence score of the track.
tracklet_len (int): Length of the tracklet.
cls (Any): Class label for the object.
idx (int): Index or identifier for the object.
frame_id (int): Current frame ID.
start_frame (int): Frame where the object was first detected.
Methods:
predict(): Predict the next state of the object using Kalman filter.
multi_predict(stracks): Predict the next states for multiple tracks.
multi_gmc(stracks, H): Update multiple track states using a homography matrix.
activate(kalman_filter, frame_id): Activate a new tracklet.
re_activate(new_track, frame_id, new_id): Reactivate a previously lost tracklet.
update(new_track, frame_id): Update the state of a matched track.
convert_coords(tlwh): Convert bounding box to x-y-aspect-height format.
tlwh_to_xyah(tlwh): Convert tlwh bounding box to xyah format.
Examples:
Initialize and activate a new track
>>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls="person")
>>> track.activate(kalman_filter=KalmanFilterXYAH(), frame_id=1)
"""
shared_kalman = KalmanFilterXYAH()
def __init__(self, xywh, score, cls):
"""
Initialize a new STrack instance.
Args:
xywh (List[float]): Bounding box coordinates and dimensions in the format (x, y, w, h, [a], idx), where
(x, y) is the center, (w, h) are width and height, [a] is optional aspect ratio, and idx is the id.
score (float): Confidence score of the detection.
cls (Any): Class label for the detected object.
Examples:
>>> xywh = [100.0, 150.0, 50.0, 75.0, 1]
>>> score = 0.9
>>> cls = "person"
>>> track = STrack(xywh, score, cls)
"""
super().__init__()
# xywh+idx or xywha+idx
assert len(xywh) in {5, 6}, f"expected 5 or 6 values but got {len(xywh)}"
self._tlwh = np.asarray(xywh2ltwh(xywh[:4]), dtype=np.float32)
self.kalman_filter = None
self.mean, self.covariance = None, None
self.is_activated = False
self.score = score
self.tracklet_len = 0
self.cls = cls
self.idx = xywh[-1]
self.angle = xywh[4] if len(xywh) == 6 else None
def predict(self):
"""Predicts the next state (mean and covariance) of the object using the Kalman filter."""
mean_state = self.mean.copy()
if self.state != TrackState.Tracked:
mean_state[7] = 0
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
@staticmethod
def multi_predict(stracks):
"""Perform multi-object predictive tracking using Kalman filter for the provided list of STrack instances."""
if len(stracks) <= 0:
return
multi_mean = np.asarray([st.mean.copy() for st in stracks])
multi_covariance = np.asarray([st.covariance for st in stracks])
for i, st in enumerate(stracks):
if st.state != TrackState.Tracked:
multi_mean[i][7] = 0
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
stracks[i].mean = mean
stracks[i].covariance = cov
@staticmethod
def multi_gmc(stracks, H=np.eye(2, 3)):
"""Update state tracks positions and covariances using a homography matrix for multiple tracks."""
if len(stracks) > 0:
multi_mean = np.asarray([st.mean.copy() for st in stracks])
multi_covariance = np.asarray([st.covariance for st in stracks])
R = H[:2, :2]
R8x8 = np.kron(np.eye(4, dtype=float), R)
t = H[:2, 2]
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
mean = R8x8.dot(mean)
mean[:2] += t
cov = R8x8.dot(cov).dot(R8x8.transpose())
stracks[i].mean = mean
stracks[i].covariance = cov
def activate(self, kalman_filter, frame_id):
"""Activate a new tracklet using the provided Kalman filter and initialize its state and covariance."""
self.kalman_filter = kalman_filter
self.track_id = self.next_id()
self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))
self.tracklet_len = 0
self.state = TrackState.Tracked
if frame_id == 1:
self.is_activated = True
self.frame_id = frame_id
self.start_frame = frame_id
def re_activate(self, new_track, frame_id, new_id=False):
"""Reactivates a previously lost track using new detection data and updates its state and attributes."""
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.convert_coords(new_track.tlwh)
)
self.tracklet_len = 0
self.state = TrackState.Tracked
self.is_activated = True
self.frame_id = frame_id
if new_id:
self.track_id = self.next_id()
self.score = new_track.score
self.cls = new_track.cls
self.angle = new_track.angle
self.idx = new_track.idx
def update(self, new_track, frame_id):
"""
Update the state of a matched track.
Args:
new_track (STrack): The new track containing updated information.
frame_id (int): The ID of the current frame.
Examples:
Update the state of a track with new detection information
>>> track = STrack([100, 200, 50, 80, 0.9, 1])
>>> new_track = STrack([105, 205, 55, 85, 0.95, 1])
>>> track.update(new_track, 2)
"""
self.frame_id = frame_id
self.tracklet_len += 1
new_tlwh = new_track.tlwh
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.convert_coords(new_tlwh)
)
self.state = TrackState.Tracked
self.is_activated = True
self.score = new_track.score
self.cls = new_track.cls
self.angle = new_track.angle
self.idx = new_track.idx
def convert_coords(self, tlwh):
"""Convert a bounding box's top-left-width-height format to its x-y-aspect-height equivalent."""
return self.tlwh_to_xyah(tlwh)
@property
def tlwh(self):
"""Returns the bounding box in top-left-width-height format from the current state estimate."""
if self.mean is None:
return self._tlwh.copy()
ret = self.mean[:4].copy()
ret[2] *= ret[3]
ret[:2] -= ret[2:] / 2
return ret
@property
def xyxy(self):
"""Converts bounding box from (top left x, top left y, width, height) to (min x, min y, max x, max y) format."""
ret = self.tlwh.copy()
ret[2:] += ret[:2]
return ret
@staticmethod
def tlwh_to_xyah(tlwh):
"""Convert bounding box from tlwh format to center-x-center-y-aspect-height (xyah) format."""
ret = np.asarray(tlwh).copy()
ret[:2] += ret[2:] / 2
ret[2] /= ret[3]
return ret
@property
def xywh(self):
"""Returns the current position of the bounding box in (center x, center y, width, height) format."""
ret = np.asarray(self.tlwh).copy()
ret[:2] += ret[2:] / 2
return ret
@property
def xywha(self):
"""Returns position in (center x, center y, width, height, angle) format, warning if angle is missing."""
if self.angle is None:
LOGGER.warning("WARNING ⚠️ `angle` attr not found, returning `xywh` instead.")
return self.xywh
return np.concatenate([self.xywh, self.angle[None]])
@property
def result(self):
"""Returns the current tracking results in the appropriate bounding box format."""
coords = self.xyxy if self.angle is None else self.xywha
return coords.tolist() + [self.track_id, self.score, self.cls, self.idx]
def __repr__(self):
"""Returns a string representation of the STrack object including start frame, end frame, and track ID."""
return f"OT_{self.track_id}_({self.start_frame}-{self.end_frame})"
class BYTETracker:
"""
BYTETracker: A tracking algorithm built on top of YOLOv8 for object detection and tracking.
Responsible for initializing, updating, and managing the tracks for detected objects in a video sequence.
It maintains the state of tracked, lost, and removed tracks over frames, utilizes Kalman filtering for predicting
the new object locations, and performs data association.
Attributes:
tracked_stracks (List[STrack]): List of successfully activated tracks.
lost_stracks (List[STrack]): List of lost tracks.
removed_stracks (List[STrack]): List of removed tracks.
frame_id (int): The current frame ID.
args (Namespace): Command-line arguments.
max_time_lost (int): The maximum frames for a track to be considered as 'lost'.
kalman_filter (KalmanFilterXYAH): Kalman Filter object.
Methods:
update(results, img=None): Updates object tracker with new detections.
get_kalmanfilter(): Returns a Kalman filter object for tracking bounding boxes.
init_track(dets, scores, cls, img=None): Initialize object tracking with detections.
get_dists(tracks, detections): Calculates the distance between tracks and detections.
multi_predict(tracks): Predicts the location of tracks.
reset_id(): Resets the ID counter of STrack.
joint_stracks(tlista, tlistb): Combines two lists of stracks.
sub_stracks(tlista, tlistb): Filters out the stracks present in the second list from the first list.
remove_duplicate_stracks(stracksa, stracksb): Removes duplicate stracks based on IoU.
Examples:
Initialize BYTETracker and update with detection results
>>> tracker = BYTETracker(args, frame_rate=30)
>>> results = yolo_model.detect(image)
>>> tracked_objects = tracker.update(results)
"""
def __init__(self, args, frame_rate=30):
"""
Initialize a BYTETracker instance for object tracking.
Args:
args (Namespace): Command-line arguments containing tracking parameters.
frame_rate (int): Frame rate of the video sequence.
Examples:
Initialize BYTETracker with command-line arguments and a frame rate of 30
>>> args = Namespace(track_buffer=30)
>>> tracker = BYTETracker(args, frame_rate=30)
"""
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.frame_id = 0
self.args = args
self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer)
self.kalman_filter = self.get_kalmanfilter()
self.reset_id()
def update(self, results, img=None):
"""Updates the tracker with new detections and returns the current list of tracked objects."""
self.frame_id += 1
activated_stracks = []
refind_stracks = []
lost_stracks = []
removed_stracks = []
scores = results.conf
bboxes = results.xywhr if hasattr(results, "xywhr") else results.xywh
# Add index
bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)
cls = results.cls
remain_inds = scores >= self.args.track_high_thresh
inds_low = scores > self.args.track_low_thresh
inds_high = scores < self.args.track_high_thresh
inds_second = inds_low & inds_high
dets_second = bboxes[inds_second]
dets = bboxes[remain_inds]
scores_keep = scores[remain_inds]
scores_second = scores[inds_second]
cls_keep = cls[remain_inds]
cls_second = cls[inds_second]
detections = self.init_track(dets, scores_keep, cls_keep, img)
# Add newly detected tracklets to tracked_stracks
unconfirmed = []
tracked_stracks = [] # type: list[STrack]
for track in self.tracked_stracks:
if not track.is_activated:
unconfirmed.append(track)
else:
tracked_stracks.append(track)
# Step 2: First association, with high score detection boxes
strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks)
# Predict the current location with KF
self.multi_predict(strack_pool)
if hasattr(self, "gmc") and img is not None:
warp = self.gmc.apply(img, dets)
STrack.multi_gmc(strack_pool, warp)
STrack.multi_gmc(unconfirmed, warp)
dists = self.get_dists(strack_pool, detections)
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)
for itracked, idet in matches:
track = strack_pool[itracked]
det = detections[idet]
if track.state == TrackState.Tracked:
track.update(det, self.frame_id)
activated_stracks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
# Step 3: Second association, with low score detection boxes association the untrack to the low score detections
detections_second = self.init_track(dets_second, scores_second, cls_second, img)
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
# TODO
dists = matching.iou_distance(r_tracked_stracks, detections_second)
matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)
for itracked, idet in matches:
track = r_tracked_stracks[itracked]
det = detections_second[idet]
if track.state == TrackState.Tracked:
track.update(det, self.frame_id)
activated_stracks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
for it in u_track:
track = r_tracked_stracks[it]
if track.state != TrackState.Lost:
track.mark_lost()
lost_stracks.append(track)
# Deal with unconfirmed tracks, usually tracks with only one beginning frame
detections = [detections[i] for i in u_detection]
dists = self.get_dists(unconfirmed, detections)
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
for itracked, idet in matches:
unconfirmed[itracked].update(detections[idet], self.frame_id)
activated_stracks.append(unconfirmed[itracked])
for it in u_unconfirmed:
track = unconfirmed[it]
track.mark_removed()
removed_stracks.append(track)
# Step 4: Init new stracks
for inew in u_detection:
track = detections[inew]
if track.score < self.args.new_track_thresh:
continue
track.activate(self.kalman_filter, self.frame_id)
activated_stracks.append(track)
# Step 5: Update state
for track in self.lost_stracks:
if self.frame_id - track.end_frame > self.max_time_lost:
track.mark_removed()
removed_stracks.append(track)
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks)
self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks)
self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks)
self.lost_stracks.extend(lost_stracks)
self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks)
self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
self.removed_stracks.extend(removed_stracks)
if len(self.removed_stracks) > 1000:
self.removed_stracks = self.removed_stracks[-999:] # clip remove stracks to 1000 maximum
return np.asarray([x.result for x in self.tracked_stracks if x.is_activated], dtype=np.float32)
def get_kalmanfilter(self):
"""Returns a Kalman filter object for tracking bounding boxes using KalmanFilterXYAH."""
return KalmanFilterXYAH()
def init_track(self, dets, scores, cls, img=None):
"""Initializes object tracking with given detections, scores, and class labels using the STrack algorithm."""
return [STrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] if len(dets) else [] # detections
def get_dists(self, tracks, detections):
"""Calculates the distance between tracks and detections using IoU and optionally fuses scores."""
dists = matching.iou_distance(tracks, detections)
if self.args.fuse_score:
dists = matching.fuse_score(dists, detections)
return dists
def multi_predict(self, tracks):
"""Predict the next states for multiple tracks using Kalman filter."""
STrack.multi_predict(tracks)
@staticmethod
def reset_id():
"""Resets the ID counter for STrack instances to ensure unique track IDs across tracking sessions."""
STrack.reset_id()
def reset(self):
"""Resets the tracker by clearing all tracked, lost, and removed tracks and reinitializing the Kalman filter."""
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.frame_id = 0
self.kalman_filter = self.get_kalmanfilter()
self.reset_id()
@staticmethod
def joint_stracks(tlista, tlistb):
"""Combines two lists of STrack objects into a single list, ensuring no duplicates based on track IDs."""
exists = {}
res = []
for t in tlista:
exists[t.track_id] = 1
res.append(t)
for t in tlistb:
tid = t.track_id
if not exists.get(tid, 0):
exists[tid] = 1
res.append(t)
return res
@staticmethod
def sub_stracks(tlista, tlistb):
"""Filters out the stracks present in the second list from the first list."""
track_ids_b = {t.track_id for t in tlistb}
return [t for t in tlista if t.track_id not in track_ids_b]
@staticmethod
def remove_duplicate_stracks(stracksa, stracksb):
"""Removes duplicate stracks from two lists based on Intersection over Union (IoU) distance."""
pdist = matching.iou_distance(stracksa, stracksb)
pairs = np.where(pdist < 0.15)
dupa, dupb = [], []
for p, q in zip(*pairs):
timep = stracksa[p].frame_id - stracksa[p].start_frame
timeq = stracksb[q].frame_id - stracksb[q].start_frame
if timep > timeq:
dupb.append(q)
else:
dupa.append(p)
resa = [t for i, t in enumerate(stracksa) if i not in dupa]
resb = [t for i, t in enumerate(stracksb) if i not in dupb]
return resa, resb