|
|
|
"""Block modules."""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from ultralytics.utils.torch_utils import fuse_conv_and_bn
|
|
|
|
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad
|
|
from .transformer import TransformerBlock
|
|
|
|
__all__ = (
|
|
"DFL",
|
|
"HGBlock",
|
|
"HGStem",
|
|
"SPP",
|
|
"SPPF",
|
|
"C1",
|
|
"C2",
|
|
"C3",
|
|
"C2f",
|
|
"C2fAttn",
|
|
"ImagePoolingAttn",
|
|
"ContrastiveHead",
|
|
"BNContrastiveHead",
|
|
"C3x",
|
|
"C3TR",
|
|
"C3Ghost",
|
|
"GhostBottleneck",
|
|
"Bottleneck",
|
|
"BottleneckCSP",
|
|
"Proto",
|
|
"RepC3",
|
|
"ResNetLayer",
|
|
"RepNCSPELAN4",
|
|
"ELAN1",
|
|
"ADown",
|
|
"AConv",
|
|
"SPPELAN",
|
|
"CBFuse",
|
|
"CBLinear",
|
|
"C3k2",
|
|
"C2fPSA",
|
|
"C2PSA",
|
|
"RepVGGDW",
|
|
"CIB",
|
|
"C2fCIB",
|
|
"Attention",
|
|
"PSA",
|
|
"SCDown",
|
|
)
|
|
|
|
|
|
class DFL(nn.Module):
|
|
"""
|
|
Integral module of Distribution Focal Loss (DFL).
|
|
|
|
Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
|
"""
|
|
|
|
def __init__(self, c1=16):
|
|
"""Initialize a convolutional layer with a given number of input channels."""
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
|
|
x = torch.arange(c1, dtype=torch.float)
|
|
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
|
|
self.c1 = c1
|
|
|
|
def forward(self, x):
|
|
"""Applies a transformer layer on input tensor 'x' and returns a tensor."""
|
|
b, _, a = x.shape
|
|
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
|
|
|
|
|
|
|
|
class Proto(nn.Module):
|
|
"""YOLOv8 mask Proto module for segmentation models."""
|
|
|
|
def __init__(self, c1, c_=256, c2=32):
|
|
"""
|
|
Initializes the YOLOv8 mask Proto module with specified number of protos and masks.
|
|
|
|
Input arguments are ch_in, number of protos, number of masks.
|
|
"""
|
|
super().__init__()
|
|
self.cv1 = Conv(c1, c_, k=3)
|
|
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)
|
|
self.cv2 = Conv(c_, c_, k=3)
|
|
self.cv3 = Conv(c_, c2)
|
|
|
|
def forward(self, x):
|
|
"""Performs a forward pass through layers using an upsampled input image."""
|
|
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
|
|
|
|
|
class HGStem(nn.Module):
|
|
"""
|
|
StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
|
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
|
"""
|
|
|
|
def __init__(self, c1, cm, c2):
|
|
"""Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
|
|
super().__init__()
|
|
self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
|
|
self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
|
|
self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
|
|
self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
|
|
self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass of a PPHGNetV2 backbone layer."""
|
|
x = self.stem1(x)
|
|
x = F.pad(x, [0, 1, 0, 1])
|
|
x2 = self.stem2a(x)
|
|
x2 = F.pad(x2, [0, 1, 0, 1])
|
|
x2 = self.stem2b(x2)
|
|
x1 = self.pool(x)
|
|
x = torch.cat([x1, x2], dim=1)
|
|
x = self.stem3(x)
|
|
x = self.stem4(x)
|
|
return x
|
|
|
|
|
|
class HGBlock(nn.Module):
|
|
"""
|
|
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
|
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
|
"""
|
|
|
|
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
|
|
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
|
|
super().__init__()
|
|
block = LightConv if lightconv else Conv
|
|
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
|
|
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)
|
|
self.ec = Conv(c2 // 2, c2, 1, 1, act=act)
|
|
self.add = shortcut and c1 == c2
|
|
|
|
def forward(self, x):
|
|
"""Forward pass of a PPHGNetV2 backbone layer."""
|
|
y = [x]
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
y = self.ec(self.sc(torch.cat(y, 1)))
|
|
return y + x if self.add else y
|
|
|
|
|
|
class SPP(nn.Module):
|
|
"""Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""
|
|
|
|
def __init__(self, c1, c2, k=(5, 9, 13)):
|
|
"""Initialize the SPP layer with input/output channels and pooling kernel sizes."""
|
|
super().__init__()
|
|
c_ = c1 // 2
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
|
|
|
def forward(self, x):
|
|
"""Forward pass of the SPP layer, performing spatial pyramid pooling."""
|
|
x = self.cv1(x)
|
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
|
|
|
|
|
class SPPF(nn.Module):
|
|
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
|
|
|
|
def __init__(self, c1, c2, k=5):
|
|
"""
|
|
Initializes the SPPF layer with given input/output channels and kernel size.
|
|
|
|
This module is equivalent to SPP(k=(5, 9, 13)).
|
|
"""
|
|
super().__init__()
|
|
c_ = c1 // 2
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
|
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through Ghost Convolution block."""
|
|
y = [self.cv1(x)]
|
|
y.extend(self.m(y[-1]) for _ in range(3))
|
|
return self.cv2(torch.cat(y, 1))
|
|
|
|
|
|
class C1(nn.Module):
|
|
"""CSP Bottleneck with 1 convolution."""
|
|
|
|
def __init__(self, c1, c2, n=1):
|
|
"""Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
|
|
super().__init__()
|
|
self.cv1 = Conv(c1, c2, 1, 1)
|
|
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Applies cross-convolutions to input in the C3 module."""
|
|
y = self.cv1(x)
|
|
return self.m(y) + y
|
|
|
|
|
|
class C2(nn.Module):
|
|
"""CSP Bottleneck with 2 convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes a CSP Bottleneck with 2 convolutions and optional shortcut connection."""
|
|
super().__init__()
|
|
self.c = int(c2 * e)
|
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
|
self.cv2 = Conv(2 * self.c, c2, 1)
|
|
|
|
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
|
a, b = self.cv1(x).chunk(2, 1)
|
|
return self.cv2(torch.cat((self.m(a), b), 1))
|
|
|
|
|
|
class C2f(nn.Module):
|
|
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
|
|
"""Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
|
|
super().__init__()
|
|
self.c = int(c2 * e)
|
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
|
self.cv2 = Conv((2 + n) * self.c, c2, 1)
|
|
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through C2f layer."""
|
|
y = list(self.cv1(x).chunk(2, 1))
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
return self.cv2(torch.cat(y, 1))
|
|
|
|
def forward_split(self, x):
|
|
"""Forward pass using split() instead of chunk()."""
|
|
y = list(self.cv1(x).split((self.c, self.c), 1))
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
return self.cv2(torch.cat(y, 1))
|
|
|
|
|
|
class C3(nn.Module):
|
|
"""CSP Bottleneck with 3 convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
|
|
super().__init__()
|
|
c_ = int(c2 * e)
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c1, c_, 1, 1)
|
|
self.cv3 = Conv(2 * c_, c2, 1)
|
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
|
|
|
|
|
class C3x(C3):
|
|
"""C3 module with cross-convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initialize C3TR instance and set default parameters."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
self.c_ = int(c2 * e)
|
|
self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))
|
|
|
|
|
|
class RepC3(nn.Module):
|
|
"""Rep C3."""
|
|
|
|
def __init__(self, c1, c2, n=3, e=1.0):
|
|
"""Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
|
|
super().__init__()
|
|
c_ = int(c2 * e)
|
|
self.cv1 = Conv(c1, c2, 1, 1)
|
|
self.cv2 = Conv(c1, c2, 1, 1)
|
|
self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
|
|
self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
"""Forward pass of RT-DETR neck layer."""
|
|
return self.cv3(self.m(self.cv1(x)) + self.cv2(x))
|
|
|
|
|
|
class C3TR(C3):
|
|
"""C3 module with TransformerBlock()."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initialize C3Ghost module with GhostBottleneck()."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e)
|
|
self.m = TransformerBlock(c_, c_, 4, n)
|
|
|
|
|
|
class C3Ghost(C3):
|
|
"""C3 module with GhostBottleneck()."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e)
|
|
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
|
|
|
|
|
class GhostBottleneck(nn.Module):
|
|
"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
|
|
|
|
def __init__(self, c1, c2, k=3, s=1):
|
|
"""Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
|
|
super().__init__()
|
|
c_ = c2 // 2
|
|
self.conv = nn.Sequential(
|
|
GhostConv(c1, c_, 1, 1),
|
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),
|
|
GhostConv(c_, c2, 1, 1, act=False),
|
|
)
|
|
self.shortcut = (
|
|
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""Applies skip connection and concatenation to input tensor."""
|
|
return self.conv(x) + self.shortcut(x)
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
"""Standard bottleneck."""
|
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
|
|
"""Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
|
|
super().__init__()
|
|
c_ = int(c2 * e)
|
|
self.cv1 = Conv(c1, c_, k[0], 1)
|
|
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
|
self.add = shortcut and c1 == c2
|
|
|
|
def forward(self, x):
|
|
"""Applies the YOLO FPN to input data."""
|
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
|
|
|
|
|
class BottleneckCSP(nn.Module):
|
|
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
|
|
super().__init__()
|
|
c_ = int(c2 * e)
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
|
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
|
self.bn = nn.BatchNorm2d(2 * c_)
|
|
self.act = nn.SiLU()
|
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Applies a CSP bottleneck with 3 convolutions."""
|
|
y1 = self.cv3(self.m(self.cv1(x)))
|
|
y2 = self.cv2(x)
|
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
|
|
|
|
|
class ResNetBlock(nn.Module):
|
|
"""ResNet block with standard convolution layers."""
|
|
|
|
def __init__(self, c1, c2, s=1, e=4):
|
|
"""Initialize convolution with given parameters."""
|
|
super().__init__()
|
|
c3 = e * c2
|
|
self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
|
|
self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
|
|
self.cv3 = Conv(c2, c3, k=1, act=False)
|
|
self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through the ResNet block."""
|
|
return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))
|
|
|
|
|
|
class ResNetLayer(nn.Module):
|
|
"""ResNet layer with multiple ResNet blocks."""
|
|
|
|
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
|
|
"""Initializes the ResNetLayer given arguments."""
|
|
super().__init__()
|
|
self.is_first = is_first
|
|
|
|
if self.is_first:
|
|
self.layer = nn.Sequential(
|
|
Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
)
|
|
else:
|
|
blocks = [ResNetBlock(c1, c2, s, e=e)]
|
|
blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
|
|
self.layer = nn.Sequential(*blocks)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through the ResNet layer."""
|
|
return self.layer(x)
|
|
|
|
|
|
class MaxSigmoidAttnBlock(nn.Module):
|
|
"""Max Sigmoid attention block."""
|
|
|
|
def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
|
|
"""Initializes MaxSigmoidAttnBlock with specified arguments."""
|
|
super().__init__()
|
|
self.nh = nh
|
|
self.hc = c2 // nh
|
|
self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
|
|
self.gl = nn.Linear(gc, ec)
|
|
self.bias = nn.Parameter(torch.zeros(nh))
|
|
self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
|
|
self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0
|
|
|
|
def forward(self, x, guide):
|
|
"""Forward process."""
|
|
bs, _, h, w = x.shape
|
|
|
|
guide = self.gl(guide)
|
|
guide = guide.view(bs, -1, self.nh, self.hc)
|
|
embed = self.ec(x) if self.ec is not None else x
|
|
embed = embed.view(bs, self.nh, self.hc, h, w)
|
|
|
|
aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
|
|
aw = aw.max(dim=-1)[0]
|
|
aw = aw / (self.hc**0.5)
|
|
aw = aw + self.bias[None, :, None, None]
|
|
aw = aw.sigmoid() * self.scale
|
|
|
|
x = self.proj_conv(x)
|
|
x = x.view(bs, self.nh, -1, h, w)
|
|
x = x * aw.unsqueeze(2)
|
|
return x.view(bs, -1, h, w)
|
|
|
|
|
|
class C2fAttn(nn.Module):
|
|
"""C2f module with an additional attn module."""
|
|
|
|
def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
|
|
"""Initializes C2f module with attention mechanism for enhanced feature extraction and processing."""
|
|
super().__init__()
|
|
self.c = int(c2 * e)
|
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
|
self.cv2 = Conv((3 + n) * self.c, c2, 1)
|
|
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
|
|
self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)
|
|
|
|
def forward(self, x, guide):
|
|
"""Forward pass through C2f layer."""
|
|
y = list(self.cv1(x).chunk(2, 1))
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
y.append(self.attn(y[-1], guide))
|
|
return self.cv2(torch.cat(y, 1))
|
|
|
|
def forward_split(self, x, guide):
|
|
"""Forward pass using split() instead of chunk()."""
|
|
y = list(self.cv1(x).split((self.c, self.c), 1))
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
y.append(self.attn(y[-1], guide))
|
|
return self.cv2(torch.cat(y, 1))
|
|
|
|
|
|
class ImagePoolingAttn(nn.Module):
|
|
"""ImagePoolingAttn: Enhance the text embeddings with image-aware information."""
|
|
|
|
def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
|
|
"""Initializes ImagePoolingAttn with specified arguments."""
|
|
super().__init__()
|
|
|
|
nf = len(ch)
|
|
self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
|
|
self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
|
|
self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
|
|
self.proj = nn.Linear(ec, ct)
|
|
self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
|
|
self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
|
|
self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
|
|
self.ec = ec
|
|
self.nh = nh
|
|
self.nf = nf
|
|
self.hc = ec // nh
|
|
self.k = k
|
|
|
|
def forward(self, x, text):
|
|
"""Executes attention mechanism on input tensor x and guide tensor."""
|
|
bs = x[0].shape[0]
|
|
assert len(x) == self.nf
|
|
num_patches = self.k**2
|
|
x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
|
|
x = torch.cat(x, dim=-1).transpose(1, 2)
|
|
q = self.query(text)
|
|
k = self.key(x)
|
|
v = self.value(x)
|
|
|
|
|
|
q = q.reshape(bs, -1, self.nh, self.hc)
|
|
k = k.reshape(bs, -1, self.nh, self.hc)
|
|
v = v.reshape(bs, -1, self.nh, self.hc)
|
|
|
|
aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
|
|
aw = aw / (self.hc**0.5)
|
|
aw = F.softmax(aw, dim=-1)
|
|
|
|
x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
|
|
x = self.proj(x.reshape(bs, -1, self.ec))
|
|
return x * self.scale + text
|
|
|
|
|
|
class ContrastiveHead(nn.Module):
|
|
"""Implements contrastive learning head for region-text similarity in vision-language models."""
|
|
|
|
def __init__(self):
|
|
"""Initializes ContrastiveHead with specified region-text similarity parameters."""
|
|
super().__init__()
|
|
|
|
self.bias = nn.Parameter(torch.tensor([-10.0]))
|
|
self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())
|
|
|
|
def forward(self, x, w):
|
|
"""Forward function of contrastive learning."""
|
|
x = F.normalize(x, dim=1, p=2)
|
|
w = F.normalize(w, dim=-1, p=2)
|
|
x = torch.einsum("bchw,bkc->bkhw", x, w)
|
|
return x * self.logit_scale.exp() + self.bias
|
|
|
|
|
|
class BNContrastiveHead(nn.Module):
|
|
"""
|
|
Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization.
|
|
|
|
Args:
|
|
embed_dims (int): Embed dimensions of text and image features.
|
|
"""
|
|
|
|
def __init__(self, embed_dims: int):
|
|
"""Initialize ContrastiveHead with region-text similarity parameters."""
|
|
super().__init__()
|
|
self.norm = nn.BatchNorm2d(embed_dims)
|
|
|
|
self.bias = nn.Parameter(torch.tensor([-10.0]))
|
|
|
|
self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))
|
|
|
|
def forward(self, x, w):
|
|
"""Forward function of contrastive learning."""
|
|
x = self.norm(x)
|
|
w = F.normalize(w, dim=-1, p=2)
|
|
x = torch.einsum("bchw,bkc->bkhw", x, w)
|
|
return x * self.logit_scale.exp() + self.bias
|
|
|
|
|
|
class RepBottleneck(Bottleneck):
|
|
"""Rep bottleneck."""
|
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
|
|
"""Initializes a RepBottleneck module with customizable in/out channels, shortcuts, groups and expansion."""
|
|
super().__init__(c1, c2, shortcut, g, k, e)
|
|
c_ = int(c2 * e)
|
|
self.cv1 = RepConv(c1, c_, k[0], 1)
|
|
|
|
|
|
class RepCSP(C3):
|
|
"""Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
"""Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e)
|
|
self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
|
|
|
|
|
class RepNCSPELAN4(nn.Module):
|
|
"""CSP-ELAN."""
|
|
|
|
def __init__(self, c1, c2, c3, c4, n=1):
|
|
"""Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""
|
|
super().__init__()
|
|
self.c = c3 // 2
|
|
self.cv1 = Conv(c1, c3, 1, 1)
|
|
self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
|
|
self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
|
|
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through RepNCSPELAN4 layer."""
|
|
y = list(self.cv1(x).chunk(2, 1))
|
|
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
|
|
return self.cv4(torch.cat(y, 1))
|
|
|
|
def forward_split(self, x):
|
|
"""Forward pass using split() instead of chunk()."""
|
|
y = list(self.cv1(x).split((self.c, self.c), 1))
|
|
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
|
|
return self.cv4(torch.cat(y, 1))
|
|
|
|
|
|
class ELAN1(RepNCSPELAN4):
|
|
"""ELAN1 module with 4 convolutions."""
|
|
|
|
def __init__(self, c1, c2, c3, c4):
|
|
"""Initializes ELAN1 layer with specified channel sizes."""
|
|
super().__init__(c1, c2, c3, c4)
|
|
self.c = c3 // 2
|
|
self.cv1 = Conv(c1, c3, 1, 1)
|
|
self.cv2 = Conv(c3 // 2, c4, 3, 1)
|
|
self.cv3 = Conv(c4, c4, 3, 1)
|
|
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
|
|
|
|
|
|
class AConv(nn.Module):
|
|
"""AConv."""
|
|
|
|
def __init__(self, c1, c2):
|
|
"""Initializes AConv module with convolution layers."""
|
|
super().__init__()
|
|
self.cv1 = Conv(c1, c2, 3, 2, 1)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through AConv layer."""
|
|
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
|
|
return self.cv1(x)
|
|
|
|
|
|
class ADown(nn.Module):
|
|
"""ADown."""
|
|
|
|
def __init__(self, c1, c2):
|
|
"""Initializes ADown module with convolution layers to downsample input from channels c1 to c2."""
|
|
super().__init__()
|
|
self.c = c2 // 2
|
|
self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
|
|
self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through ADown layer."""
|
|
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
|
|
x1, x2 = x.chunk(2, 1)
|
|
x1 = self.cv1(x1)
|
|
x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
|
|
x2 = self.cv2(x2)
|
|
return torch.cat((x1, x2), 1)
|
|
|
|
|
|
class SPPELAN(nn.Module):
|
|
"""SPP-ELAN."""
|
|
|
|
def __init__(self, c1, c2, c3, k=5):
|
|
"""Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling."""
|
|
super().__init__()
|
|
self.c = c3
|
|
self.cv1 = Conv(c1, c3, 1, 1)
|
|
self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
|
self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
|
self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
|
self.cv5 = Conv(4 * c3, c2, 1, 1)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through SPPELAN layer."""
|
|
y = [self.cv1(x)]
|
|
y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
|
|
return self.cv5(torch.cat(y, 1))
|
|
|
|
|
|
class CBLinear(nn.Module):
|
|
"""CBLinear."""
|
|
|
|
def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
|
|
"""Initializes the CBLinear module, passing inputs unchanged."""
|
|
super().__init__()
|
|
self.c2s = c2s
|
|
self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through CBLinear layer."""
|
|
return self.conv(x).split(self.c2s, dim=1)
|
|
|
|
|
|
class CBFuse(nn.Module):
|
|
"""CBFuse."""
|
|
|
|
def __init__(self, idx):
|
|
"""Initializes CBFuse module with layer index for selective feature fusion."""
|
|
super().__init__()
|
|
self.idx = idx
|
|
|
|
def forward(self, xs):
|
|
"""Forward pass through CBFuse layer."""
|
|
target_size = xs[-1].shape[2:]
|
|
res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
|
|
return torch.sum(torch.stack(res + xs[-1:]), dim=0)
|
|
|
|
|
|
class C3f(nn.Module):
|
|
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
|
|
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
|
expansion.
|
|
"""
|
|
super().__init__()
|
|
c_ = int(c2 * e)
|
|
self.cv1 = Conv(c1, c_, 1, 1)
|
|
self.cv2 = Conv(c1, c_, 1, 1)
|
|
self.cv3 = Conv((2 + n) * c_, c2, 1)
|
|
self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
|
|
|
|
def forward(self, x):
|
|
"""Forward pass through C2f layer."""
|
|
y = [self.cv2(x), self.cv1(x)]
|
|
y.extend(m(y[-1]) for m in self.m)
|
|
return self.cv3(torch.cat(y, 1))
|
|
|
|
|
|
class C3k2(C2f):
|
|
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
|
|
|
def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
|
|
"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
self.m = nn.ModuleList(
|
|
C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
|
|
)
|
|
|
|
|
|
class C3k(C3):
|
|
"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
|
|
"""Initializes the C3k module with specified channels, number of layers, and configurations."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
c_ = int(c2 * e)
|
|
|
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
|
|
|
|
|
|
class RepVGGDW(torch.nn.Module):
|
|
"""RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture."""
|
|
|
|
def __init__(self, ed) -> None:
|
|
"""Initializes RepVGGDW with depthwise separable convolutional layers for efficient processing."""
|
|
super().__init__()
|
|
self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
|
|
self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
|
|
self.dim = ed
|
|
self.act = nn.SiLU()
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Performs a forward pass of the RepVGGDW block.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
(torch.Tensor): Output tensor after applying the depth wise separable convolution.
|
|
"""
|
|
return self.act(self.conv(x) + self.conv1(x))
|
|
|
|
def forward_fuse(self, x):
|
|
"""
|
|
Performs a forward pass of the RepVGGDW block without fusing the convolutions.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
(torch.Tensor): Output tensor after applying the depth wise separable convolution.
|
|
"""
|
|
return self.act(self.conv(x))
|
|
|
|
@torch.no_grad()
|
|
def fuse(self):
|
|
"""
|
|
Fuses the convolutional layers in the RepVGGDW block.
|
|
|
|
This method fuses the convolutional layers and updates the weights and biases accordingly.
|
|
"""
|
|
conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
|
|
conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)
|
|
|
|
conv_w = conv.weight
|
|
conv_b = conv.bias
|
|
conv1_w = conv1.weight
|
|
conv1_b = conv1.bias
|
|
|
|
conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])
|
|
|
|
final_conv_w = conv_w + conv1_w
|
|
final_conv_b = conv_b + conv1_b
|
|
|
|
conv.weight.data.copy_(final_conv_w)
|
|
conv.bias.data.copy_(final_conv_b)
|
|
|
|
self.conv = conv
|
|
del self.conv1
|
|
|
|
|
|
class CIB(nn.Module):
|
|
"""
|
|
Conditional Identity Block (CIB) module.
|
|
|
|
Args:
|
|
c1 (int): Number of input channels.
|
|
c2 (int): Number of output channels.
|
|
shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True.
|
|
e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5.
|
|
lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False.
|
|
"""
|
|
|
|
def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
|
|
"""Initializes the custom model with optional shortcut, scaling factor, and RepVGGDW layer."""
|
|
super().__init__()
|
|
c_ = int(c2 * e)
|
|
self.cv1 = nn.Sequential(
|
|
Conv(c1, c1, 3, g=c1),
|
|
Conv(c1, 2 * c_, 1),
|
|
RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_),
|
|
Conv(2 * c_, c2, 1),
|
|
Conv(c2, c2, 3, g=c2),
|
|
)
|
|
|
|
self.add = shortcut and c1 == c2
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the CIB module.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
(torch.Tensor): Output tensor.
|
|
"""
|
|
return x + self.cv1(x) if self.add else self.cv1(x)
|
|
|
|
|
|
class C2fCIB(C2f):
|
|
"""
|
|
C2fCIB class represents a convolutional block with C2f and CIB modules.
|
|
|
|
Args:
|
|
c1 (int): Number of input channels.
|
|
c2 (int): Number of output channels.
|
|
n (int, optional): Number of CIB modules to stack. Defaults to 1.
|
|
shortcut (bool, optional): Whether to use shortcut connection. Defaults to False.
|
|
lk (bool, optional): Whether to use local key connection. Defaults to False.
|
|
g (int, optional): Number of groups for grouped convolution. Defaults to 1.
|
|
e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5.
|
|
"""
|
|
|
|
def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
|
|
"""Initializes the module with specified parameters for channel, shortcut, local key, groups, and expansion."""
|
|
super().__init__(c1, c2, n, shortcut, g, e)
|
|
self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""
|
|
Attention module that performs self-attention on the input tensor.
|
|
|
|
Args:
|
|
dim (int): The input tensor dimension.
|
|
num_heads (int): The number of attention heads.
|
|
attn_ratio (float): The ratio of the attention key dimension to the head dimension.
|
|
|
|
Attributes:
|
|
num_heads (int): The number of attention heads.
|
|
head_dim (int): The dimension of each attention head.
|
|
key_dim (int): The dimension of the attention key.
|
|
scale (float): The scaling factor for the attention scores.
|
|
qkv (Conv): Convolutional layer for computing the query, key, and value.
|
|
proj (Conv): Convolutional layer for projecting the attended values.
|
|
pe (Conv): Convolutional layer for positional encoding.
|
|
"""
|
|
|
|
def __init__(self, dim, num_heads=8, attn_ratio=0.5):
|
|
"""Initializes multi-head attention module with query, key, and value convolutions and positional encoding."""
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim // num_heads
|
|
self.key_dim = int(self.head_dim * attn_ratio)
|
|
self.scale = self.key_dim**-0.5
|
|
nh_kd = self.key_dim * num_heads
|
|
h = dim + nh_kd * 2
|
|
self.qkv = Conv(dim, h, 1, act=False)
|
|
self.proj = Conv(dim, dim, 1, act=False)
|
|
self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the Attention module.
|
|
|
|
Args:
|
|
x (torch.Tensor): The input tensor.
|
|
|
|
Returns:
|
|
(torch.Tensor): The output tensor after self-attention.
|
|
"""
|
|
B, C, H, W = x.shape
|
|
N = H * W
|
|
qkv = self.qkv(x)
|
|
q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
|
|
[self.key_dim, self.key_dim, self.head_dim], dim=2
|
|
)
|
|
|
|
attn = (q.transpose(-2, -1) @ k) * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class PSABlock(nn.Module):
|
|
"""
|
|
PSABlock class implementing a Position-Sensitive Attention block for neural networks.
|
|
|
|
This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
|
|
with optional shortcut connections.
|
|
|
|
Attributes:
|
|
attn (Attention): Multi-head attention module.
|
|
ffn (nn.Sequential): Feed-forward neural network module.
|
|
add (bool): Flag indicating whether to add shortcut connections.
|
|
|
|
Methods:
|
|
forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers.
|
|
|
|
Examples:
|
|
Create a PSABlock and perform a forward pass
|
|
>>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
|
|
>>> input_tensor = torch.randn(1, 128, 32, 32)
|
|
>>> output_tensor = psablock(input_tensor)
|
|
"""
|
|
|
|
def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None:
|
|
"""Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction."""
|
|
super().__init__()
|
|
|
|
self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
|
|
self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
|
|
self.add = shortcut
|
|
|
|
def forward(self, x):
|
|
"""Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor."""
|
|
x = x + self.attn(x) if self.add else self.attn(x)
|
|
x = x + self.ffn(x) if self.add else self.ffn(x)
|
|
return x
|
|
|
|
|
|
class PSA(nn.Module):
|
|
"""
|
|
PSA class for implementing Position-Sensitive Attention in neural networks.
|
|
|
|
This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to
|
|
input tensors, enhancing feature extraction and processing capabilities.
|
|
|
|
Attributes:
|
|
c (int): Number of hidden channels after applying the initial convolution.
|
|
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
|
|
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
|
|
attn (Attention): Attention module for position-sensitive attention.
|
|
ffn (nn.Sequential): Feed-forward network for further processing.
|
|
|
|
Methods:
|
|
forward: Applies position-sensitive attention and feed-forward network to the input tensor.
|
|
|
|
Examples:
|
|
Create a PSA module and apply it to an input tensor
|
|
>>> psa = PSA(c1=128, c2=128, e=0.5)
|
|
>>> input_tensor = torch.randn(1, 128, 64, 64)
|
|
>>> output_tensor = psa.forward(input_tensor)
|
|
"""
|
|
|
|
def __init__(self, c1, c2, e=0.5):
|
|
"""Initializes the PSA module with input/output channels and attention mechanism for feature extraction."""
|
|
super().__init__()
|
|
assert c1 == c2
|
|
self.c = int(c1 * e)
|
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
|
self.cv2 = Conv(2 * self.c, c1, 1)
|
|
|
|
self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
|
|
self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))
|
|
|
|
def forward(self, x):
|
|
"""Executes forward pass in PSA module, applying attention and feed-forward layers to the input tensor."""
|
|
a, b = self.cv1(x).split((self.c, self.c), dim=1)
|
|
b = b + self.attn(b)
|
|
b = b + self.ffn(b)
|
|
return self.cv2(torch.cat((a, b), 1))
|
|
|
|
|
|
class C2PSA(nn.Module):
|
|
"""
|
|
C2PSA module with attention mechanism for enhanced feature extraction and processing.
|
|
|
|
This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
|
|
capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
|
|
|
|
Attributes:
|
|
c (int): Number of hidden channels.
|
|
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
|
|
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
|
|
m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.
|
|
|
|
Methods:
|
|
forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
|
|
|
|
Notes:
|
|
This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
|
|
|
|
Examples:
|
|
>>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
|
|
>>> input_tensor = torch.randn(1, 256, 64, 64)
|
|
>>> output_tensor = c2psa(input_tensor)
|
|
"""
|
|
|
|
def __init__(self, c1, c2, n=1, e=0.5):
|
|
"""Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
|
|
super().__init__()
|
|
assert c1 == c2
|
|
self.c = int(c1 * e)
|
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
|
self.cv2 = Conv(2 * self.c, c1, 1)
|
|
|
|
self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
|
|
|
|
def forward(self, x):
|
|
"""Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
|
|
a, b = self.cv1(x).split((self.c, self.c), dim=1)
|
|
b = self.m(b)
|
|
return self.cv2(torch.cat((a, b), 1))
|
|
|
|
|
|
class C2fPSA(C2f):
|
|
"""
|
|
C2fPSA module with enhanced feature extraction using PSA blocks.
|
|
|
|
This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction.
|
|
|
|
Attributes:
|
|
c (int): Number of hidden channels.
|
|
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
|
|
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
|
|
m (nn.ModuleList): List of PSA blocks for feature extraction.
|
|
|
|
Methods:
|
|
forward: Performs a forward pass through the C2fPSA module.
|
|
forward_split: Performs a forward pass using split() instead of chunk().
|
|
|
|
Examples:
|
|
>>> import torch
|
|
>>> from ultralytics.models.common import C2fPSA
|
|
>>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5)
|
|
>>> x = torch.randn(1, 64, 128, 128)
|
|
>>> output = model(x)
|
|
>>> print(output.shape)
|
|
"""
|
|
|
|
def __init__(self, c1, c2, n=1, e=0.5):
|
|
"""Initializes the C2fPSA module, a variant of C2f with PSA blocks for enhanced feature extraction."""
|
|
assert c1 == c2
|
|
super().__init__(c1, c2, n=n, e=e)
|
|
self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))
|
|
|
|
|
|
class SCDown(nn.Module):
|
|
"""
|
|
SCDown module for downsampling with separable convolutions.
|
|
|
|
This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in
|
|
efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information.
|
|
|
|
Attributes:
|
|
cv1 (Conv): Pointwise convolution layer that reduces the number of channels.
|
|
cv2 (Conv): Depthwise convolution layer that performs spatial downsampling.
|
|
|
|
Methods:
|
|
forward: Applies the SCDown module to the input tensor.
|
|
|
|
Examples:
|
|
>>> import torch
|
|
>>> from ultralytics import SCDown
|
|
>>> model = SCDown(c1=64, c2=128, k=3, s=2)
|
|
>>> x = torch.randn(1, 64, 128, 128)
|
|
>>> y = model(x)
|
|
>>> print(y.shape)
|
|
torch.Size([1, 128, 64, 64])
|
|
"""
|
|
|
|
def __init__(self, c1, c2, k, s):
|
|
"""Initializes the SCDown module with specified input/output channels, kernel size, and stride."""
|
|
super().__init__()
|
|
self.cv1 = Conv(c1, c2, 1, 1)
|
|
self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)
|
|
|
|
def forward(self, x):
|
|
"""Applies convolution and downsampling to the input tensor in the SCDown module."""
|
|
return self.cv2(self.cv1(x))
|
|
|