|
|
|
|
|
import math
|
|
from typing import Tuple, Type
|
|
|
|
import torch
|
|
from torch import Tensor, nn
|
|
|
|
from ultralytics.nn.modules import MLPBlock
|
|
|
|
|
|
class TwoWayTransformer(nn.Module):
|
|
"""
|
|
A Two-Way Transformer module for simultaneous attention to image and query points.
|
|
|
|
This class implements a specialized transformer decoder that attends to an input image using queries with
|
|
supplied positional embeddings. It's useful for tasks like object detection, image segmentation, and point
|
|
cloud processing.
|
|
|
|
Attributes:
|
|
depth (int): Number of layers in the transformer.
|
|
embedding_dim (int): Channel dimension for input embeddings.
|
|
num_heads (int): Number of heads for multihead attention.
|
|
mlp_dim (int): Internal channel dimension for the MLP block.
|
|
layers (nn.ModuleList): List of TwoWayAttentionBlock layers composing the transformer.
|
|
final_attn_token_to_image (Attention): Final attention layer from queries to image.
|
|
norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries.
|
|
|
|
Methods:
|
|
forward: Processes image and point embeddings through the transformer.
|
|
|
|
Examples:
|
|
>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
|
|
>>> image_embedding = torch.randn(1, 256, 32, 32)
|
|
>>> image_pe = torch.randn(1, 256, 32, 32)
|
|
>>> point_embedding = torch.randn(1, 100, 256)
|
|
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
|
|
>>> print(output_queries.shape, output_image.shape)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
depth: int,
|
|
embedding_dim: int,
|
|
num_heads: int,
|
|
mlp_dim: int,
|
|
activation: Type[nn.Module] = nn.ReLU,
|
|
attention_downsample_rate: int = 2,
|
|
) -> None:
|
|
"""
|
|
Initialize a Two-Way Transformer for simultaneous attention to image and query points.
|
|
|
|
Args:
|
|
depth (int): Number of layers in the transformer.
|
|
embedding_dim (int): Channel dimension for input embeddings.
|
|
num_heads (int): Number of heads for multihead attention. Must divide embedding_dim.
|
|
mlp_dim (int): Internal channel dimension for the MLP block.
|
|
activation (Type[nn.Module]): Activation function to use in the MLP block.
|
|
attention_downsample_rate (int): Downsampling rate for attention mechanism.
|
|
|
|
Attributes:
|
|
depth (int): Number of layers in the transformer.
|
|
embedding_dim (int): Channel dimension for input embeddings.
|
|
num_heads (int): Number of heads for multihead attention.
|
|
mlp_dim (int): Internal channel dimension for the MLP block.
|
|
layers (nn.ModuleList): List of TwoWayAttentionBlock layers.
|
|
final_attn_token_to_image (Attention): Final attention layer from queries to image.
|
|
norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries.
|
|
|
|
Examples:
|
|
>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
|
|
>>> image_embedding = torch.randn(1, 256, 32, 32)
|
|
>>> image_pe = torch.randn(1, 256, 32, 32)
|
|
>>> point_embedding = torch.randn(1, 100, 256)
|
|
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
|
|
>>> print(output_queries.shape, output_image.shape)
|
|
"""
|
|
super().__init__()
|
|
self.depth = depth
|
|
self.embedding_dim = embedding_dim
|
|
self.num_heads = num_heads
|
|
self.mlp_dim = mlp_dim
|
|
self.layers = nn.ModuleList()
|
|
|
|
for i in range(depth):
|
|
self.layers.append(
|
|
TwoWayAttentionBlock(
|
|
embedding_dim=embedding_dim,
|
|
num_heads=num_heads,
|
|
mlp_dim=mlp_dim,
|
|
activation=activation,
|
|
attention_downsample_rate=attention_downsample_rate,
|
|
skip_first_layer_pe=(i == 0),
|
|
)
|
|
)
|
|
|
|
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
|
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
|
|
|
def forward(
|
|
self,
|
|
image_embedding: Tensor,
|
|
image_pe: Tensor,
|
|
point_embedding: Tensor,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Processes image and point embeddings through the Two-Way Transformer.
|
|
|
|
Args:
|
|
image_embedding (torch.Tensor): Image to attend to, with shape (B, embedding_dim, H, W).
|
|
image_pe (torch.Tensor): Positional encoding to add to the image, with same shape as image_embedding.
|
|
point_embedding (torch.Tensor): Embedding to add to query points, with shape (B, N_points, embedding_dim).
|
|
|
|
Returns:
|
|
(Tuple[torch.Tensor, torch.Tensor]): Processed point_embedding and image_embedding.
|
|
|
|
Examples:
|
|
>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048)
|
|
>>> image_embedding = torch.randn(1, 256, 32, 32)
|
|
>>> image_pe = torch.randn(1, 256, 32, 32)
|
|
>>> point_embedding = torch.randn(1, 100, 256)
|
|
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding)
|
|
>>> print(output_queries.shape, output_image.shape)
|
|
"""
|
|
|
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
|
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
|
|
|
|
|
queries = point_embedding
|
|
keys = image_embedding
|
|
|
|
|
|
for layer in self.layers:
|
|
queries, keys = layer(
|
|
queries=queries,
|
|
keys=keys,
|
|
query_pe=point_embedding,
|
|
key_pe=image_pe,
|
|
)
|
|
|
|
|
|
q = queries + point_embedding
|
|
k = keys + image_pe
|
|
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
|
queries = queries + attn_out
|
|
queries = self.norm_final_attn(queries)
|
|
|
|
return queries, keys
|
|
|
|
|
|
class TwoWayAttentionBlock(nn.Module):
|
|
"""
|
|
A two-way attention block for simultaneous attention to image and query points.
|
|
|
|
This class implements a specialized transformer block with four main layers: self-attention on sparse inputs,
|
|
cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense
|
|
inputs to sparse inputs.
|
|
|
|
Attributes:
|
|
self_attn (Attention): Self-attention layer for queries.
|
|
norm1 (nn.LayerNorm): Layer normalization after self-attention.
|
|
cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys.
|
|
norm2 (nn.LayerNorm): Layer normalization after token-to-image attention.
|
|
mlp (MLPBlock): MLP block for transforming query embeddings.
|
|
norm3 (nn.LayerNorm): Layer normalization after MLP block.
|
|
norm4 (nn.LayerNorm): Layer normalization after image-to-token attention.
|
|
cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries.
|
|
skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer.
|
|
|
|
Methods:
|
|
forward: Applies self-attention and cross-attention to queries and keys.
|
|
|
|
Examples:
|
|
>>> embedding_dim, num_heads = 256, 8
|
|
>>> block = TwoWayAttentionBlock(embedding_dim, num_heads)
|
|
>>> queries = torch.randn(1, 100, embedding_dim)
|
|
>>> keys = torch.randn(1, 1000, embedding_dim)
|
|
>>> query_pe = torch.randn(1, 100, embedding_dim)
|
|
>>> key_pe = torch.randn(1, 1000, embedding_dim)
|
|
>>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
num_heads: int,
|
|
mlp_dim: int = 2048,
|
|
activation: Type[nn.Module] = nn.ReLU,
|
|
attention_downsample_rate: int = 2,
|
|
skip_first_layer_pe: bool = False,
|
|
) -> None:
|
|
"""
|
|
Initializes a TwoWayAttentionBlock for simultaneous attention to image and query points.
|
|
|
|
This block implements a specialized transformer layer with four main components: self-attention on sparse
|
|
inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention
|
|
of dense inputs to sparse inputs.
|
|
|
|
Args:
|
|
embedding_dim (int): Channel dimension of the embeddings.
|
|
num_heads (int): Number of attention heads in the attention layers.
|
|
mlp_dim (int): Hidden dimension of the MLP block.
|
|
activation (Type[nn.Module]): Activation function for the MLP block.
|
|
attention_downsample_rate (int): Downsampling rate for the attention mechanism.
|
|
skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer.
|
|
|
|
Examples:
|
|
>>> embedding_dim, num_heads = 256, 8
|
|
>>> block = TwoWayAttentionBlock(embedding_dim, num_heads)
|
|
>>> queries = torch.randn(1, 100, embedding_dim)
|
|
>>> keys = torch.randn(1, 1000, embedding_dim)
|
|
>>> query_pe = torch.randn(1, 100, embedding_dim)
|
|
>>> key_pe = torch.randn(1, 1000, embedding_dim)
|
|
>>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe)
|
|
"""
|
|
super().__init__()
|
|
self.self_attn = Attention(embedding_dim, num_heads)
|
|
self.norm1 = nn.LayerNorm(embedding_dim)
|
|
|
|
self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
|
self.norm2 = nn.LayerNorm(embedding_dim)
|
|
|
|
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
|
self.norm3 = nn.LayerNorm(embedding_dim)
|
|
|
|
self.norm4 = nn.LayerNorm(embedding_dim)
|
|
self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
|
|
|
self.skip_first_layer_pe = skip_first_layer_pe
|
|
|
|
def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
|
|
"""Applies two-way attention to process query and key embeddings in a transformer block."""
|
|
|
|
if self.skip_first_layer_pe:
|
|
queries = self.self_attn(q=queries, k=queries, v=queries)
|
|
else:
|
|
q = queries + query_pe
|
|
attn_out = self.self_attn(q=q, k=q, v=queries)
|
|
queries = queries + attn_out
|
|
queries = self.norm1(queries)
|
|
|
|
|
|
q = queries + query_pe
|
|
k = keys + key_pe
|
|
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
|
queries = queries + attn_out
|
|
queries = self.norm2(queries)
|
|
|
|
|
|
mlp_out = self.mlp(queries)
|
|
queries = queries + mlp_out
|
|
queries = self.norm3(queries)
|
|
|
|
|
|
q = queries + query_pe
|
|
k = keys + key_pe
|
|
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
|
keys = keys + attn_out
|
|
keys = self.norm4(keys)
|
|
|
|
return queries, keys
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""
|
|
An attention layer with downscaling capability for embedding size after projection.
|
|
|
|
This class implements a multi-head attention mechanism with the option to downsample the internal
|
|
dimension of queries, keys, and values.
|
|
|
|
Attributes:
|
|
embedding_dim (int): Dimensionality of input embeddings.
|
|
kv_in_dim (int): Dimensionality of key and value inputs.
|
|
internal_dim (int): Internal dimension after downsampling.
|
|
num_heads (int): Number of attention heads.
|
|
q_proj (nn.Linear): Linear projection for queries.
|
|
k_proj (nn.Linear): Linear projection for keys.
|
|
v_proj (nn.Linear): Linear projection for values.
|
|
out_proj (nn.Linear): Linear projection for output.
|
|
|
|
Methods:
|
|
_separate_heads: Separates input tensor into attention heads.
|
|
_recombine_heads: Recombines separated attention heads.
|
|
forward: Computes attention output for given query, key, and value tensors.
|
|
|
|
Examples:
|
|
>>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2)
|
|
>>> q = torch.randn(1, 100, 256)
|
|
>>> k = v = torch.randn(1, 50, 256)
|
|
>>> output = attn(q, k, v)
|
|
>>> print(output.shape)
|
|
torch.Size([1, 100, 256])
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
num_heads: int,
|
|
downsample_rate: int = 1,
|
|
kv_in_dim: int = None,
|
|
) -> None:
|
|
"""
|
|
Initializes the Attention module with specified dimensions and settings.
|
|
|
|
This class implements a multi-head attention mechanism with optional downsampling of the internal
|
|
dimension for queries, keys, and values.
|
|
|
|
Args:
|
|
embedding_dim (int): Dimensionality of input embeddings.
|
|
num_heads (int): Number of attention heads.
|
|
downsample_rate (int): Factor by which internal dimensions are downsampled. Defaults to 1.
|
|
kv_in_dim (int | None): Dimensionality of key and value inputs. If None, uses embedding_dim.
|
|
|
|
Raises:
|
|
AssertionError: If num_heads does not evenly divide the internal dim (embedding_dim / downsample_rate).
|
|
|
|
Examples:
|
|
>>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2)
|
|
>>> q = torch.randn(1, 100, 256)
|
|
>>> k = v = torch.randn(1, 50, 256)
|
|
>>> output = attn(q, k, v)
|
|
>>> print(output.shape)
|
|
torch.Size([1, 100, 256])
|
|
"""
|
|
super().__init__()
|
|
self.embedding_dim = embedding_dim
|
|
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
|
|
self.internal_dim = embedding_dim // downsample_rate
|
|
self.num_heads = num_heads
|
|
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
|
|
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
|
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
|
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
|
|
|
@staticmethod
|
|
def _separate_heads(x: Tensor, num_heads: int) -> Tensor:
|
|
"""Separates the input tensor into the specified number of attention heads."""
|
|
b, n, c = x.shape
|
|
x = x.reshape(b, n, num_heads, c // num_heads)
|
|
return x.transpose(1, 2)
|
|
|
|
@staticmethod
|
|
def _recombine_heads(x: Tensor) -> Tensor:
|
|
"""Recombines separated attention heads into a single tensor."""
|
|
b, n_heads, n_tokens, c_per_head = x.shape
|
|
x = x.transpose(1, 2)
|
|
return x.reshape(b, n_tokens, n_heads * c_per_head)
|
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
|
"""Applies multi-head attention to query, key, and value tensors with optional downsampling."""
|
|
|
|
q = self.q_proj(q)
|
|
k = self.k_proj(k)
|
|
v = self.v_proj(v)
|
|
|
|
|
|
q = self._separate_heads(q, self.num_heads)
|
|
k = self._separate_heads(k, self.num_heads)
|
|
v = self._separate_heads(v, self.num_heads)
|
|
|
|
|
|
_, _, _, c_per_head = q.shape
|
|
attn = q @ k.permute(0, 1, 3, 2)
|
|
attn = attn / math.sqrt(c_per_head)
|
|
attn = torch.softmax(attn, dim=-1)
|
|
|
|
|
|
out = attn @ v
|
|
out = self._recombine_heads(out)
|
|
return self.out_proj(out)
|
|
|