|
|
|
|
|
import math
|
|
from itertools import product
|
|
from typing import Any, Generator, List, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
def is_box_near_crop_edge(
|
|
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
|
|
) -> torch.Tensor:
|
|
"""Determines if bounding boxes are near the edge of a cropped image region using a specified tolerance."""
|
|
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
|
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
|
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
|
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
|
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
|
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
|
return torch.any(near_crop_edge, dim=1)
|
|
|
|
|
|
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
|
"""Yields batches of data from input arguments with specified batch size for efficient processing."""
|
|
assert args and all(len(a) == len(args[0]) for a in args), "Batched iteration must have same-size inputs."
|
|
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
|
for b in range(n_batches):
|
|
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
|
|
|
|
|
def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
|
|
"""
|
|
Computes the stability score for a batch of masks.
|
|
|
|
The stability score is the IoU between binary masks obtained by thresholding the predicted mask logits at
|
|
high and low values.
|
|
|
|
Args:
|
|
masks (torch.Tensor): Batch of predicted mask logits.
|
|
mask_threshold (float): Threshold value for creating binary masks.
|
|
threshold_offset (float): Offset applied to the threshold for creating high and low binary masks.
|
|
|
|
Returns:
|
|
(torch.Tensor): Stability scores for each mask in the batch.
|
|
|
|
Notes:
|
|
- One mask is always contained inside the other.
|
|
- Memory is saved by preventing unnecessary cast to torch.int64.
|
|
|
|
Examples:
|
|
>>> masks = torch.rand(10, 256, 256) # Batch of 10 masks
|
|
>>> mask_threshold = 0.5
|
|
>>> threshold_offset = 0.1
|
|
>>> stability_scores = calculate_stability_score(masks, mask_threshold, threshold_offset)
|
|
"""
|
|
intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
|
|
unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
|
|
return intersections / unions
|
|
|
|
|
|
def build_point_grid(n_per_side: int) -> np.ndarray:
|
|
"""Generate a 2D grid of evenly spaced points in the range [0,1]x[0,1] for image segmentation tasks."""
|
|
offset = 1 / (2 * n_per_side)
|
|
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
|
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
|
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
|
return np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
|
|
|
|
|
def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
|
|
"""Generates point grids for multiple crop layers with varying scales and densities."""
|
|
return [build_point_grid(int(n_per_side / (scale_per_layer**i))) for i in range(n_layers + 1)]
|
|
|
|
|
|
def generate_crop_boxes(
|
|
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
|
|
) -> Tuple[List[List[int]], List[int]]:
|
|
"""Generates crop boxes of varying sizes for multi-scale image processing, with layered overlapping regions."""
|
|
crop_boxes, layer_idxs = [], []
|
|
im_h, im_w = im_size
|
|
short_side = min(im_h, im_w)
|
|
|
|
|
|
crop_boxes.append([0, 0, im_w, im_h])
|
|
layer_idxs.append(0)
|
|
|
|
def crop_len(orig_len, n_crops, overlap):
|
|
"""Crops bounding boxes to the size of the input image."""
|
|
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
|
|
|
for i_layer in range(n_layers):
|
|
n_crops_per_side = 2 ** (i_layer + 1)
|
|
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
|
|
|
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
|
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
|
|
|
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
|
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
|
|
|
|
|
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
|
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
|
crop_boxes.append(box)
|
|
layer_idxs.append(i_layer + 1)
|
|
|
|
return crop_boxes, layer_idxs
|
|
|
|
|
|
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
|
"""Uncrop bounding boxes by adding the crop box offset to their coordinates."""
|
|
x0, y0, _, _ = crop_box
|
|
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
|
|
|
if len(boxes.shape) == 3:
|
|
offset = offset.unsqueeze(1)
|
|
return boxes + offset
|
|
|
|
|
|
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
|
"""Uncrop points by adding the crop box offset to their coordinates."""
|
|
x0, y0, _, _ = crop_box
|
|
offset = torch.tensor([[x0, y0]], device=points.device)
|
|
|
|
if len(points.shape) == 3:
|
|
offset = offset.unsqueeze(1)
|
|
return points + offset
|
|
|
|
|
|
def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
|
|
"""Uncrop masks by padding them to the original image size, handling coordinate transformations."""
|
|
x0, y0, x1, y1 = crop_box
|
|
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
|
return masks
|
|
|
|
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
|
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
|
return torch.nn.functional.pad(masks, pad, value=0)
|
|
|
|
|
|
def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
|
|
"""Removes small disconnected regions or holes in a mask based on area threshold and mode."""
|
|
import cv2
|
|
|
|
assert mode in {"holes", "islands"}, f"Provided mode {mode} is invalid"
|
|
correct_holes = mode == "holes"
|
|
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
|
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
|
sizes = stats[:, -1][1:]
|
|
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
|
if not small_regions:
|
|
return mask, False
|
|
fill_labels = [0] + small_regions
|
|
if not correct_holes:
|
|
|
|
fill_labels = [i for i in range(n_labels) if i not in fill_labels] or [int(np.argmax(sizes)) + 1]
|
|
mask = np.isin(regions, fill_labels)
|
|
return mask, True
|
|
|
|
|
|
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
|
"""Calculates bounding boxes in XYXY format around binary masks, handling empty masks and various input shapes."""
|
|
|
|
if torch.numel(masks) == 0:
|
|
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
|
|
|
|
|
shape = masks.shape
|
|
h, w = shape[-2:]
|
|
masks = masks.flatten(0, -3) if len(shape) > 2 else masks.unsqueeze(0)
|
|
|
|
in_height, _ = torch.max(masks, dim=-1)
|
|
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
|
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
|
in_height_coords = in_height_coords + h * (~in_height)
|
|
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
|
|
|
|
|
in_width, _ = torch.max(masks, dim=-2)
|
|
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
|
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
|
in_width_coords = in_width_coords + w * (~in_width)
|
|
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
|
|
|
|
|
|
|
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
|
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
|
out = out * (~empty_filter).unsqueeze(-1)
|
|
|
|
|
|
return out.reshape(*shape[:-2], 4) if len(shape) > 2 else out[0]
|
|
|