|
|
|
|
|
import torch
|
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator
|
|
from ultralytics.utils import ops
|
|
|
|
__all__ = ["NASValidator"]
|
|
|
|
|
|
class NASValidator(DetectionValidator):
|
|
"""
|
|
Ultralytics YOLO NAS Validator for object detection.
|
|
|
|
Extends `DetectionValidator` from the Ultralytics models package and is designed to post-process the raw predictions
|
|
generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes,
|
|
ultimately producing the final detections.
|
|
|
|
Attributes:
|
|
args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU.
|
|
lb (torch.Tensor): Optional tensor for multilabel NMS.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics import NAS
|
|
|
|
model = NAS("yolo_nas_s")
|
|
validator = model.validator
|
|
# Assumes that raw_preds are available
|
|
final_preds = validator.postprocess(raw_preds)
|
|
```
|
|
|
|
Note:
|
|
This class is generally not instantiated directly but is used internally within the `NAS` class.
|
|
"""
|
|
|
|
def postprocess(self, preds_in):
|
|
"""Apply Non-maximum suppression to prediction outputs."""
|
|
boxes = ops.xyxy2xywh(preds_in[0][0])
|
|
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
|
return ops.non_max_suppression(
|
|
preds,
|
|
self.args.conf,
|
|
self.args.iou,
|
|
labels=self.lb,
|
|
multi_label=False,
|
|
agnostic=self.args.single_cls or self.args.agnostic_nms,
|
|
max_det=self.args.max_det,
|
|
max_time_img=0.5,
|
|
)
|
|
|