|
|
|
"""
|
|
Check a model's accuracy on a test or val split of a dataset.
|
|
|
|
Usage:
|
|
$ yolo mode=val model=yolov8n.pt data=coco8.yaml imgsz=640
|
|
|
|
Usage - formats:
|
|
$ yolo mode=val model=yolov8n.pt # PyTorch
|
|
yolov8n.torchscript # TorchScript
|
|
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
|
|
yolov8n_openvino_model # OpenVINO
|
|
yolov8n.engine # TensorRT
|
|
yolov8n.mlpackage # CoreML (macOS-only)
|
|
yolov8n_saved_model # TensorFlow SavedModel
|
|
yolov8n.pb # TensorFlow GraphDef
|
|
yolov8n.tflite # TensorFlow Lite
|
|
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
|
|
yolov8n_paddle_model # PaddlePaddle
|
|
yolov8n_ncnn_model # NCNN
|
|
"""
|
|
|
|
import json
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ultralytics.cfg import get_cfg, get_save_dir
|
|
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
|
|
from ultralytics.nn.autobackend import AutoBackend
|
|
from ultralytics.utils import LOGGER, TQDM, callbacks, colorstr, emojis
|
|
from ultralytics.utils.checks import check_imgsz
|
|
from ultralytics.utils.ops import Profile
|
|
from ultralytics.utils.torch_utils import de_parallel, select_device, smart_inference_mode
|
|
|
|
|
|
class BaseValidator:
|
|
"""
|
|
BaseValidator.
|
|
|
|
A base class for creating validators.
|
|
|
|
Attributes:
|
|
args (SimpleNamespace): Configuration for the validator.
|
|
dataloader (DataLoader): Dataloader to use for validation.
|
|
pbar (tqdm): Progress bar to update during validation.
|
|
model (nn.Module): Model to validate.
|
|
data (dict): Data dictionary.
|
|
device (torch.device): Device to use for validation.
|
|
batch_i (int): Current batch index.
|
|
training (bool): Whether the model is in training mode.
|
|
names (dict): Class names.
|
|
seen: Records the number of images seen so far during validation.
|
|
stats: Placeholder for statistics during validation.
|
|
confusion_matrix: Placeholder for a confusion matrix.
|
|
nc: Number of classes.
|
|
iouv: (torch.Tensor): IoU thresholds from 0.50 to 0.95 in spaces of 0.05.
|
|
jdict (dict): Dictionary to store JSON validation results.
|
|
speed (dict): Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective
|
|
batch processing times in milliseconds.
|
|
save_dir (Path): Directory to save results.
|
|
plots (dict): Dictionary to store plots for visualization.
|
|
callbacks (dict): Dictionary to store various callback functions.
|
|
"""
|
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
|
"""
|
|
Initializes a BaseValidator instance.
|
|
|
|
Args:
|
|
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
|
|
save_dir (Path, optional): Directory to save results.
|
|
pbar (tqdm.tqdm): Progress bar for displaying progress.
|
|
args (SimpleNamespace): Configuration for the validator.
|
|
_callbacks (dict): Dictionary to store various callback functions.
|
|
"""
|
|
self.args = get_cfg(overrides=args)
|
|
self.dataloader = dataloader
|
|
self.pbar = pbar
|
|
self.stride = None
|
|
self.data = None
|
|
self.device = None
|
|
self.batch_i = None
|
|
self.training = True
|
|
self.names = None
|
|
self.seen = None
|
|
self.stats = None
|
|
self.confusion_matrix = None
|
|
self.nc = None
|
|
self.iouv = None
|
|
self.jdict = None
|
|
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
|
|
|
|
self.save_dir = save_dir or get_save_dir(self.args)
|
|
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
|
if self.args.conf is None:
|
|
self.args.conf = 0.001
|
|
self.args.imgsz = check_imgsz(self.args.imgsz, max_dim=1)
|
|
|
|
self.plots = {}
|
|
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
|
|
|
@smart_inference_mode()
|
|
def __call__(self, trainer=None, model=None):
|
|
"""Executes validation process, running inference on dataloader and computing performance metrics."""
|
|
self.training = trainer is not None
|
|
augment = self.args.augment and (not self.training)
|
|
if self.training:
|
|
self.device = trainer.device
|
|
self.data = trainer.data
|
|
|
|
self.args.half = self.device.type != "cpu" and trainer.amp
|
|
model = trainer.ema.ema or trainer.model
|
|
model = model.half() if self.args.half else model.float()
|
|
|
|
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
|
|
self.args.plots &= trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1)
|
|
model.eval()
|
|
else:
|
|
if str(self.args.model).endswith(".yaml"):
|
|
LOGGER.warning("WARNING ⚠️ validating an untrained model YAML will result in 0 mAP.")
|
|
callbacks.add_integration_callbacks(self)
|
|
model = AutoBackend(
|
|
weights=model or self.args.model,
|
|
device=select_device(self.args.device, self.args.batch),
|
|
dnn=self.args.dnn,
|
|
data=self.args.data,
|
|
fp16=self.args.half,
|
|
)
|
|
|
|
self.device = model.device
|
|
self.args.half = model.fp16
|
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
|
imgsz = check_imgsz(self.args.imgsz, stride=stride)
|
|
if engine:
|
|
self.args.batch = model.batch_size
|
|
elif not pt and not jit:
|
|
self.args.batch = model.metadata.get("batch", 1)
|
|
LOGGER.info(f"Setting batch={self.args.batch} input of shape ({self.args.batch}, 3, {imgsz}, {imgsz})")
|
|
|
|
if str(self.args.data).split(".")[-1] in {"yaml", "yml"}:
|
|
self.data = check_det_dataset(self.args.data)
|
|
elif self.args.task == "classify":
|
|
self.data = check_cls_dataset(self.args.data, split=self.args.split)
|
|
else:
|
|
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌"))
|
|
|
|
if self.device.type in {"cpu", "mps"}:
|
|
self.args.workers = 0
|
|
if not pt:
|
|
self.args.rect = False
|
|
self.stride = model.stride
|
|
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
|
|
|
|
model.eval()
|
|
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz))
|
|
|
|
self.run_callbacks("on_val_start")
|
|
dt = (
|
|
Profile(device=self.device),
|
|
Profile(device=self.device),
|
|
Profile(device=self.device),
|
|
Profile(device=self.device),
|
|
)
|
|
bar = TQDM(self.dataloader, desc=self.get_desc(), total=len(self.dataloader))
|
|
self.init_metrics(de_parallel(model))
|
|
self.jdict = []
|
|
for batch_i, batch in enumerate(bar):
|
|
self.run_callbacks("on_val_batch_start")
|
|
self.batch_i = batch_i
|
|
|
|
with dt[0]:
|
|
batch = self.preprocess(batch)
|
|
|
|
|
|
with dt[1]:
|
|
preds = model(batch["img"], augment=augment)
|
|
|
|
|
|
with dt[2]:
|
|
if self.training:
|
|
self.loss += model.loss(batch, preds)[1]
|
|
|
|
|
|
with dt[3]:
|
|
preds = self.postprocess(preds)
|
|
|
|
self.update_metrics(preds, batch)
|
|
if self.args.plots and batch_i < 3:
|
|
self.plot_val_samples(batch, batch_i)
|
|
self.plot_predictions(batch, preds, batch_i)
|
|
|
|
self.run_callbacks("on_val_batch_end")
|
|
stats = self.get_stats()
|
|
self.check_stats(stats)
|
|
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1e3 for x in dt)))
|
|
self.finalize_metrics()
|
|
self.print_results()
|
|
self.run_callbacks("on_val_end")
|
|
if self.training:
|
|
model.float()
|
|
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
|
|
return {k: round(float(v), 5) for k, v in results.items()}
|
|
else:
|
|
LOGGER.info(
|
|
"Speed: {:.1f}ms preprocess, {:.1f}ms inference, {:.1f}ms loss, {:.1f}ms postprocess per image".format(
|
|
*tuple(self.speed.values())
|
|
)
|
|
)
|
|
if self.args.save_json and self.jdict:
|
|
with open(str(self.save_dir / "predictions.json"), "w") as f:
|
|
LOGGER.info(f"Saving {f.name}...")
|
|
json.dump(self.jdict, f)
|
|
stats = self.eval_json(stats)
|
|
if self.args.plots or self.args.save_json:
|
|
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
|
return stats
|
|
|
|
def match_predictions(self, pred_classes, true_classes, iou, use_scipy=False):
|
|
"""
|
|
Matches predictions to ground truth objects (pred_classes, true_classes) using IoU.
|
|
|
|
Args:
|
|
pred_classes (torch.Tensor): Predicted class indices of shape(N,).
|
|
true_classes (torch.Tensor): Target class indices of shape(M,).
|
|
iou (torch.Tensor): An NxM tensor containing the pairwise IoU values for predictions and ground of truth
|
|
use_scipy (bool): Whether to use scipy for matching (more precise).
|
|
|
|
Returns:
|
|
(torch.Tensor): Correct tensor of shape(N,10) for 10 IoU thresholds.
|
|
"""
|
|
|
|
correct = np.zeros((pred_classes.shape[0], self.iouv.shape[0])).astype(bool)
|
|
|
|
correct_class = true_classes[:, None] == pred_classes
|
|
iou = iou * correct_class
|
|
iou = iou.cpu().numpy()
|
|
for i, threshold in enumerate(self.iouv.cpu().tolist()):
|
|
if use_scipy:
|
|
|
|
import scipy
|
|
|
|
cost_matrix = iou * (iou >= threshold)
|
|
if cost_matrix.any():
|
|
labels_idx, detections_idx = scipy.optimize.linear_sum_assignment(cost_matrix, maximize=True)
|
|
valid = cost_matrix[labels_idx, detections_idx] > 0
|
|
if valid.any():
|
|
correct[detections_idx[valid], i] = True
|
|
else:
|
|
matches = np.nonzero(iou >= threshold)
|
|
matches = np.array(matches).T
|
|
if matches.shape[0]:
|
|
if matches.shape[0] > 1:
|
|
matches = matches[iou[matches[:, 0], matches[:, 1]].argsort()[::-1]]
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
|
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
|
correct[matches[:, 1].astype(int), i] = True
|
|
return torch.tensor(correct, dtype=torch.bool, device=pred_classes.device)
|
|
|
|
def add_callback(self, event: str, callback):
|
|
"""Appends the given callback."""
|
|
self.callbacks[event].append(callback)
|
|
|
|
def run_callbacks(self, event: str):
|
|
"""Runs all callbacks associated with a specified event."""
|
|
for callback in self.callbacks.get(event, []):
|
|
callback(self)
|
|
|
|
def get_dataloader(self, dataset_path, batch_size):
|
|
"""Get data loader from dataset path and batch size."""
|
|
raise NotImplementedError("get_dataloader function not implemented for this validator")
|
|
|
|
def build_dataset(self, img_path):
|
|
"""Build dataset."""
|
|
raise NotImplementedError("build_dataset function not implemented in validator")
|
|
|
|
def preprocess(self, batch):
|
|
"""Preprocesses an input batch."""
|
|
return batch
|
|
|
|
def postprocess(self, preds):
|
|
"""Preprocesses the predictions."""
|
|
return preds
|
|
|
|
def init_metrics(self, model):
|
|
"""Initialize performance metrics for the YOLO model."""
|
|
pass
|
|
|
|
def update_metrics(self, preds, batch):
|
|
"""Updates metrics based on predictions and batch."""
|
|
pass
|
|
|
|
def finalize_metrics(self, *args, **kwargs):
|
|
"""Finalizes and returns all metrics."""
|
|
pass
|
|
|
|
def get_stats(self):
|
|
"""Returns statistics about the model's performance."""
|
|
return {}
|
|
|
|
def check_stats(self, stats):
|
|
"""Checks statistics."""
|
|
pass
|
|
|
|
def print_results(self):
|
|
"""Prints the results of the model's predictions."""
|
|
pass
|
|
|
|
def get_desc(self):
|
|
"""Get description of the YOLO model."""
|
|
pass
|
|
|
|
@property
|
|
def metric_keys(self):
|
|
"""Returns the metric keys used in YOLO training/validation."""
|
|
return []
|
|
|
|
def on_plot(self, name, data=None):
|
|
"""Registers plots (e.g. to be consumed in callbacks)."""
|
|
self.plots[Path(name)] = {"data": data, "timestamp": time.time()}
|
|
|
|
|
|
def plot_val_samples(self, batch, ni):
|
|
"""Plots validation samples during training."""
|
|
pass
|
|
|
|
def plot_predictions(self, batch, preds, ni):
|
|
"""Plots YOLO model predictions on batch images."""
|
|
pass
|
|
|
|
def pred_to_json(self, preds, batch):
|
|
"""Convert predictions to JSON format."""
|
|
pass
|
|
|
|
def eval_json(self, stats):
|
|
"""Evaluate and return JSON format of prediction statistics."""
|
|
pass
|
|
|