|
|
|
|
|
import hashlib
|
|
import json
|
|
import os
|
|
import random
|
|
import subprocess
|
|
import time
|
|
import zipfile
|
|
from multiprocessing.pool import ThreadPool
|
|
from pathlib import Path
|
|
from tarfile import is_tarfile
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image, ImageOps
|
|
|
|
from ultralytics.nn.autobackend import check_class_names
|
|
from ultralytics.utils import (
|
|
DATASETS_DIR,
|
|
LOGGER,
|
|
NUM_THREADS,
|
|
ROOT,
|
|
SETTINGS_FILE,
|
|
TQDM,
|
|
clean_url,
|
|
colorstr,
|
|
emojis,
|
|
is_dir_writeable,
|
|
yaml_load,
|
|
yaml_save,
|
|
)
|
|
from ultralytics.utils.checks import check_file, check_font, is_ascii
|
|
from ultralytics.utils.downloads import download, safe_download, unzip_file
|
|
from ultralytics.utils.ops import segments2boxes
|
|
|
|
HELP_URL = "See https://docs.ultralytics.com/datasets for dataset formatting guidance."
|
|
IMG_FORMATS = {"bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm", "heic"}
|
|
VID_FORMATS = {"asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv", "webm"}
|
|
PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true"
|
|
FORMATS_HELP_MSG = f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}"
|
|
|
|
|
|
def img2label_paths(img_paths):
|
|
"""Define label paths as a function of image paths."""
|
|
sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}"
|
|
return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths]
|
|
|
|
|
|
def get_hash(paths):
|
|
"""Returns a single hash value of a list of paths (files or dirs)."""
|
|
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))
|
|
h = hashlib.sha256(str(size).encode())
|
|
h.update("".join(paths).encode())
|
|
return h.hexdigest()
|
|
|
|
|
|
def exif_size(img: Image.Image):
|
|
"""Returns exif-corrected PIL size."""
|
|
s = img.size
|
|
if img.format == "JPEG":
|
|
try:
|
|
exif = img.getexif()
|
|
if exif:
|
|
rotation = exif.get(274, None)
|
|
if rotation in {6, 8}:
|
|
s = s[1], s[0]
|
|
except:
|
|
pass
|
|
return s
|
|
|
|
|
|
def verify_image(args):
|
|
"""Verify one image."""
|
|
(im_file, cls), prefix = args
|
|
|
|
nf, nc, msg = 0, 0, ""
|
|
try:
|
|
im = Image.open(im_file)
|
|
im.verify()
|
|
shape = exif_size(im)
|
|
shape = (shape[1], shape[0])
|
|
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
|
|
assert im.format.lower() in IMG_FORMATS, f"Invalid image format {im.format}. {FORMATS_HELP_MSG}"
|
|
if im.format.lower() in {"jpg", "jpeg"}:
|
|
with open(im_file, "rb") as f:
|
|
f.seek(-2, 2)
|
|
if f.read() != b"\xff\xd9":
|
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100)
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved"
|
|
nf = 1
|
|
except Exception as e:
|
|
nc = 1
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}"
|
|
return (im_file, cls), nf, nc, msg
|
|
|
|
|
|
def verify_image_label(args):
|
|
"""Verify one image-label pair."""
|
|
im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim = args
|
|
|
|
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None
|
|
try:
|
|
|
|
im = Image.open(im_file)
|
|
im.verify()
|
|
shape = exif_size(im)
|
|
shape = (shape[1], shape[0])
|
|
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
|
|
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}. {FORMATS_HELP_MSG}"
|
|
if im.format.lower() in {"jpg", "jpeg"}:
|
|
with open(im_file, "rb") as f:
|
|
f.seek(-2, 2)
|
|
if f.read() != b"\xff\xd9":
|
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100)
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved"
|
|
|
|
|
|
if os.path.isfile(lb_file):
|
|
nf = 1
|
|
with open(lb_file) as f:
|
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
|
if any(len(x) > 6 for x in lb) and (not keypoint):
|
|
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
|
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]
|
|
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)
|
|
lb = np.array(lb, dtype=np.float32)
|
|
nl = len(lb)
|
|
if nl:
|
|
if keypoint:
|
|
assert lb.shape[1] == (5 + nkpt * ndim), f"labels require {(5 + nkpt * ndim)} columns each"
|
|
points = lb[:, 5:].reshape(-1, ndim)[:, :2]
|
|
else:
|
|
assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected"
|
|
points = lb[:, 1:]
|
|
assert points.max() <= 1, f"non-normalized or out of bounds coordinates {points[points > 1]}"
|
|
assert lb.min() >= 0, f"negative label values {lb[lb < 0]}"
|
|
|
|
|
|
max_cls = lb[:, 0].max()
|
|
assert max_cls <= num_cls, (
|
|
f"Label class {int(max_cls)} exceeds dataset class count {num_cls}. "
|
|
f"Possible class labels are 0-{num_cls - 1}"
|
|
)
|
|
_, i = np.unique(lb, axis=0, return_index=True)
|
|
if len(i) < nl:
|
|
lb = lb[i]
|
|
if segments:
|
|
segments = [segments[x] for x in i]
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed"
|
|
else:
|
|
ne = 1
|
|
lb = np.zeros((0, (5 + nkpt * ndim) if keypoint else 5), dtype=np.float32)
|
|
else:
|
|
nm = 1
|
|
lb = np.zeros((0, (5 + nkpt * ndim) if keypoints else 5), dtype=np.float32)
|
|
if keypoint:
|
|
keypoints = lb[:, 5:].reshape(-1, nkpt, ndim)
|
|
if ndim == 2:
|
|
kpt_mask = np.where((keypoints[..., 0] < 0) | (keypoints[..., 1] < 0), 0.0, 1.0).astype(np.float32)
|
|
keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1)
|
|
lb = lb[:, :5]
|
|
return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg
|
|
except Exception as e:
|
|
nc = 1
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}"
|
|
return [None, None, None, None, None, nm, nf, ne, nc, msg]
|
|
|
|
|
|
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1):
|
|
"""
|
|
Convert a list of polygons to a binary mask of the specified image size.
|
|
|
|
Args:
|
|
imgsz (tuple): The size of the image as (height, width).
|
|
polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape [N, M], where
|
|
N is the number of polygons, and M is the number of points such that M % 2 = 0.
|
|
color (int, optional): The color value to fill in the polygons on the mask. Defaults to 1.
|
|
downsample_ratio (int, optional): Factor by which to downsample the mask. Defaults to 1.
|
|
|
|
Returns:
|
|
(np.ndarray): A binary mask of the specified image size with the polygons filled in.
|
|
"""
|
|
mask = np.zeros(imgsz, dtype=np.uint8)
|
|
polygons = np.asarray(polygons, dtype=np.int32)
|
|
polygons = polygons.reshape((polygons.shape[0], -1, 2))
|
|
cv2.fillPoly(mask, polygons, color=color)
|
|
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio)
|
|
|
|
return cv2.resize(mask, (nw, nh))
|
|
|
|
|
|
def polygons2masks(imgsz, polygons, color, downsample_ratio=1):
|
|
"""
|
|
Convert a list of polygons to a set of binary masks of the specified image size.
|
|
|
|
Args:
|
|
imgsz (tuple): The size of the image as (height, width).
|
|
polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape [N, M], where
|
|
N is the number of polygons, and M is the number of points such that M % 2 = 0.
|
|
color (int): The color value to fill in the polygons on the masks.
|
|
downsample_ratio (int, optional): Factor by which to downsample each mask. Defaults to 1.
|
|
|
|
Returns:
|
|
(np.ndarray): A set of binary masks of the specified image size with the polygons filled in.
|
|
"""
|
|
return np.array([polygon2mask(imgsz, [x.reshape(-1)], color, downsample_ratio) for x in polygons])
|
|
|
|
|
|
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1):
|
|
"""Return a (640, 640) overlap mask."""
|
|
masks = np.zeros(
|
|
(imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio),
|
|
dtype=np.int32 if len(segments) > 255 else np.uint8,
|
|
)
|
|
areas = []
|
|
ms = []
|
|
for si in range(len(segments)):
|
|
mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1)
|
|
ms.append(mask.astype(masks.dtype))
|
|
areas.append(mask.sum())
|
|
areas = np.asarray(areas)
|
|
index = np.argsort(-areas)
|
|
ms = np.array(ms)[index]
|
|
for i in range(len(segments)):
|
|
mask = ms[i] * (i + 1)
|
|
masks = masks + mask
|
|
masks = np.clip(masks, a_min=0, a_max=i + 1)
|
|
return masks, index
|
|
|
|
|
|
def find_dataset_yaml(path: Path) -> Path:
|
|
"""
|
|
Find and return the YAML file associated with a Detect, Segment or Pose dataset.
|
|
|
|
This function searches for a YAML file at the root level of the provided directory first, and if not found, it
|
|
performs a recursive search. It prefers YAML files that have the same stem as the provided path. An AssertionError
|
|
is raised if no YAML file is found or if multiple YAML files are found.
|
|
|
|
Args:
|
|
path (Path): The directory path to search for the YAML file.
|
|
|
|
Returns:
|
|
(Path): The path of the found YAML file.
|
|
"""
|
|
files = list(path.glob("*.yaml")) or list(path.rglob("*.yaml"))
|
|
assert files, f"No YAML file found in '{path.resolve()}'"
|
|
if len(files) > 1:
|
|
files = [f for f in files if f.stem == path.stem]
|
|
assert len(files) == 1, f"Expected 1 YAML file in '{path.resolve()}', but found {len(files)}.\n{files}"
|
|
return files[0]
|
|
|
|
|
|
def check_det_dataset(dataset, autodownload=True):
|
|
"""
|
|
Download, verify, and/or unzip a dataset if not found locally.
|
|
|
|
This function checks the availability of a specified dataset, and if not found, it has the option to download and
|
|
unzip the dataset. It then reads and parses the accompanying YAML data, ensuring key requirements are met and also
|
|
resolves paths related to the dataset.
|
|
|
|
Args:
|
|
dataset (str): Path to the dataset or dataset descriptor (like a YAML file).
|
|
autodownload (bool, optional): Whether to automatically download the dataset if not found. Defaults to True.
|
|
|
|
Returns:
|
|
(dict): Parsed dataset information and paths.
|
|
"""
|
|
file = check_file(dataset)
|
|
|
|
|
|
extract_dir = ""
|
|
if zipfile.is_zipfile(file) or is_tarfile(file):
|
|
new_dir = safe_download(file, dir=DATASETS_DIR, unzip=True, delete=False)
|
|
file = find_dataset_yaml(DATASETS_DIR / new_dir)
|
|
extract_dir, autodownload = file.parent, False
|
|
|
|
|
|
data = yaml_load(file, append_filename=True)
|
|
|
|
|
|
for k in "train", "val":
|
|
if k not in data:
|
|
if k != "val" or "validation" not in data:
|
|
raise SyntaxError(
|
|
emojis(f"{dataset} '{k}:' key missing ❌.\n'train' and 'val' are required in all data YAMLs.")
|
|
)
|
|
LOGGER.info("WARNING ⚠️ renaming data YAML 'validation' key to 'val' to match YOLO format.")
|
|
data["val"] = data.pop("validation")
|
|
if "names" not in data and "nc" not in data:
|
|
raise SyntaxError(emojis(f"{dataset} key missing ❌.\n either 'names' or 'nc' are required in all data YAMLs."))
|
|
if "names" in data and "nc" in data and len(data["names"]) != data["nc"]:
|
|
raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match."))
|
|
if "names" not in data:
|
|
data["names"] = [f"class_{i}" for i in range(data["nc"])]
|
|
else:
|
|
data["nc"] = len(data["names"])
|
|
|
|
data["names"] = check_class_names(data["names"])
|
|
|
|
|
|
path = Path(extract_dir or data.get("path") or Path(data.get("yaml_file", "")).parent)
|
|
if not path.is_absolute():
|
|
path = (DATASETS_DIR / path).resolve()
|
|
|
|
|
|
data["path"] = path
|
|
for k in "train", "val", "test", "minival":
|
|
if data.get(k):
|
|
if isinstance(data[k], str):
|
|
x = (path / data[k]).resolve()
|
|
if not x.exists() and data[k].startswith("../"):
|
|
x = (path / data[k][3:]).resolve()
|
|
data[k] = str(x)
|
|
else:
|
|
data[k] = [str((path / x).resolve()) for x in data[k]]
|
|
|
|
|
|
val, s = (data.get(x) for x in ("val", "download"))
|
|
if val:
|
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]
|
|
if not all(x.exists() for x in val):
|
|
name = clean_url(dataset)
|
|
m = f"\nDataset '{name}' images not found ⚠️, missing path '{[x for x in val if not x.exists()][0]}'"
|
|
if s and autodownload:
|
|
LOGGER.warning(m)
|
|
else:
|
|
m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_FILE}'"
|
|
raise FileNotFoundError(m)
|
|
t = time.time()
|
|
r = None
|
|
if s.startswith("http") and s.endswith(".zip"):
|
|
safe_download(url=s, dir=DATASETS_DIR, delete=True)
|
|
elif s.startswith("bash "):
|
|
LOGGER.info(f"Running {s} ...")
|
|
r = os.system(s)
|
|
else:
|
|
exec(s, {"yaml": data})
|
|
dt = f"({round(time.time() - t, 1)}s)"
|
|
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in {0, None} else f"failure {dt} ❌"
|
|
LOGGER.info(f"Dataset download {s}\n")
|
|
check_font("Arial.ttf" if is_ascii(data["names"]) else "Arial.Unicode.ttf")
|
|
|
|
return data
|
|
|
|
|
|
def check_cls_dataset(dataset, split=""):
|
|
"""
|
|
Checks a classification dataset such as Imagenet.
|
|
|
|
This function accepts a `dataset` name and attempts to retrieve the corresponding dataset information.
|
|
If the dataset is not found locally, it attempts to download the dataset from the internet and save it locally.
|
|
|
|
Args:
|
|
dataset (str | Path): The name of the dataset.
|
|
split (str, optional): The split of the dataset. Either 'val', 'test', or ''. Defaults to ''.
|
|
|
|
Returns:
|
|
(dict): A dictionary containing the following keys:
|
|
- 'train' (Path): The directory path containing the training set of the dataset.
|
|
- 'val' (Path): The directory path containing the validation set of the dataset.
|
|
- 'test' (Path): The directory path containing the test set of the dataset.
|
|
- 'nc' (int): The number of classes in the dataset.
|
|
- 'names' (dict): A dictionary of class names in the dataset.
|
|
"""
|
|
|
|
if str(dataset).startswith(("http:/", "https:/")):
|
|
dataset = safe_download(dataset, dir=DATASETS_DIR, unzip=True, delete=False)
|
|
elif Path(dataset).suffix in {".zip", ".tar", ".gz"}:
|
|
file = check_file(dataset)
|
|
dataset = safe_download(file, dir=DATASETS_DIR, unzip=True, delete=False)
|
|
|
|
dataset = Path(dataset)
|
|
data_dir = (dataset if dataset.is_dir() else (DATASETS_DIR / dataset)).resolve()
|
|
if not data_dir.is_dir():
|
|
LOGGER.warning(f"\nDataset not found ⚠️, missing path {data_dir}, attempting download...")
|
|
t = time.time()
|
|
if str(dataset) == "imagenet":
|
|
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
|
|
else:
|
|
url = f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{dataset}.zip"
|
|
download(url, dir=data_dir.parent)
|
|
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
|
|
LOGGER.info(s)
|
|
train_set = data_dir / "train"
|
|
val_set = (
|
|
data_dir / "val"
|
|
if (data_dir / "val").exists()
|
|
else data_dir / "validation"
|
|
if (data_dir / "validation").exists()
|
|
else None
|
|
)
|
|
test_set = data_dir / "test" if (data_dir / "test").exists() else None
|
|
if split == "val" and not val_set:
|
|
LOGGER.warning("WARNING ⚠️ Dataset 'split=val' not found, using 'split=test' instead.")
|
|
elif split == "test" and not test_set:
|
|
LOGGER.warning("WARNING ⚠️ Dataset 'split=test' not found, using 'split=val' instead.")
|
|
|
|
nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()])
|
|
names = [x.name for x in (data_dir / "train").iterdir() if x.is_dir()]
|
|
names = dict(enumerate(sorted(names)))
|
|
|
|
|
|
for k, v in {"train": train_set, "val": val_set, "test": test_set}.items():
|
|
prefix = f'{colorstr(f"{k}:")} {v}...'
|
|
if v is None:
|
|
LOGGER.info(prefix)
|
|
else:
|
|
files = [path for path in v.rglob("*.*") if path.suffix[1:].lower() in IMG_FORMATS]
|
|
nf = len(files)
|
|
nd = len({file.parent for file in files})
|
|
if nf == 0:
|
|
if k == "train":
|
|
raise FileNotFoundError(emojis(f"{dataset} '{k}:' no training images found ❌ "))
|
|
else:
|
|
LOGGER.warning(f"{prefix} found {nf} images in {nd} classes: WARNING ⚠️ no images found")
|
|
elif nd != nc:
|
|
LOGGER.warning(f"{prefix} found {nf} images in {nd} classes: ERROR ❌️ requires {nc} classes, not {nd}")
|
|
else:
|
|
LOGGER.info(f"{prefix} found {nf} images in {nd} classes ✅ ")
|
|
|
|
return {"train": train_set, "val": val_set, "test": test_set, "nc": nc, "names": names}
|
|
|
|
|
|
class HUBDatasetStats:
|
|
"""
|
|
A class for generating HUB dataset JSON and `-hub` dataset directory.
|
|
|
|
Args:
|
|
path (str): Path to data.yaml or data.zip (with data.yaml inside data.zip). Default is 'coco8.yaml'.
|
|
task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. Default is 'detect'.
|
|
autodownload (bool): Attempt to download dataset if not found locally. Default is False.
|
|
|
|
Example:
|
|
Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets
|
|
i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip.
|
|
```python
|
|
from ultralytics.data.utils import HUBDatasetStats
|
|
|
|
stats = HUBDatasetStats("path/to/coco8.zip", task="detect") # detect dataset
|
|
stats = HUBDatasetStats("path/to/coco8-seg.zip", task="segment") # segment dataset
|
|
stats = HUBDatasetStats("path/to/coco8-pose.zip", task="pose") # pose dataset
|
|
stats = HUBDatasetStats("path/to/dota8.zip", task="obb") # OBB dataset
|
|
stats = HUBDatasetStats("path/to/imagenet10.zip", task="classify") # classification dataset
|
|
|
|
stats.get_json(save=True)
|
|
stats.process_images()
|
|
```
|
|
"""
|
|
|
|
def __init__(self, path="coco8.yaml", task="detect", autodownload=False):
|
|
"""Initialize class."""
|
|
path = Path(path).resolve()
|
|
LOGGER.info(f"Starting HUB dataset checks for {path}....")
|
|
|
|
self.task = task
|
|
if self.task == "classify":
|
|
unzip_dir = unzip_file(path)
|
|
data = check_cls_dataset(unzip_dir)
|
|
data["path"] = unzip_dir
|
|
else:
|
|
_, data_dir, yaml_path = self._unzip(Path(path))
|
|
try:
|
|
|
|
data = yaml_load(yaml_path)
|
|
data["path"] = ""
|
|
yaml_save(yaml_path, data)
|
|
data = check_det_dataset(yaml_path, autodownload)
|
|
data["path"] = data_dir
|
|
except Exception as e:
|
|
raise Exception("error/HUB/dataset_stats/init") from e
|
|
|
|
self.hub_dir = Path(f'{data["path"]}-hub')
|
|
self.im_dir = self.hub_dir / "images"
|
|
self.stats = {"nc": len(data["names"]), "names": list(data["names"].values())}
|
|
self.data = data
|
|
|
|
@staticmethod
|
|
def _unzip(path):
|
|
"""Unzip data.zip."""
|
|
if not str(path).endswith(".zip"):
|
|
return False, None, path
|
|
unzip_dir = unzip_file(path, path=path.parent)
|
|
assert unzip_dir.is_dir(), (
|
|
f"Error unzipping {path}, {unzip_dir} not found. " f"path/to/abc.zip MUST unzip to path/to/abc/"
|
|
)
|
|
return True, str(unzip_dir), find_dataset_yaml(unzip_dir)
|
|
|
|
def _hub_ops(self, f):
|
|
"""Saves a compressed image for HUB previews."""
|
|
compress_one_image(f, self.im_dir / Path(f).name)
|
|
|
|
def get_json(self, save=False, verbose=False):
|
|
"""Return dataset JSON for Ultralytics HUB."""
|
|
|
|
def _round(labels):
|
|
"""Update labels to integer class and 4 decimal place floats."""
|
|
if self.task == "detect":
|
|
coordinates = labels["bboxes"]
|
|
elif self.task in {"segment", "obb"}:
|
|
coordinates = [x.flatten() for x in labels["segments"]]
|
|
elif self.task == "pose":
|
|
n, nk, nd = labels["keypoints"].shape
|
|
coordinates = np.concatenate((labels["bboxes"], labels["keypoints"].reshape(n, nk * nd)), 1)
|
|
else:
|
|
raise ValueError(f"Undefined dataset task={self.task}.")
|
|
zipped = zip(labels["cls"], coordinates)
|
|
return [[int(c[0]), *(round(float(x), 4) for x in points)] for c, points in zipped]
|
|
|
|
for split in "train", "val", "test":
|
|
self.stats[split] = None
|
|
path = self.data.get(split)
|
|
|
|
|
|
if path is None:
|
|
continue
|
|
files = [f for f in Path(path).rglob("*.*") if f.suffix[1:].lower() in IMG_FORMATS]
|
|
if not files:
|
|
continue
|
|
|
|
|
|
if self.task == "classify":
|
|
from torchvision.datasets import ImageFolder
|
|
|
|
dataset = ImageFolder(self.data[split])
|
|
|
|
x = np.zeros(len(dataset.classes)).astype(int)
|
|
for im in dataset.imgs:
|
|
x[im[1]] += 1
|
|
|
|
self.stats[split] = {
|
|
"instance_stats": {"total": len(dataset), "per_class": x.tolist()},
|
|
"image_stats": {"total": len(dataset), "unlabelled": 0, "per_class": x.tolist()},
|
|
"labels": [{Path(k).name: v} for k, v in dataset.imgs],
|
|
}
|
|
else:
|
|
from ultralytics.data import YOLODataset
|
|
|
|
dataset = YOLODataset(img_path=self.data[split], data=self.data, task=self.task)
|
|
x = np.array(
|
|
[
|
|
np.bincount(label["cls"].astype(int).flatten(), minlength=self.data["nc"])
|
|
for label in TQDM(dataset.labels, total=len(dataset), desc="Statistics")
|
|
]
|
|
)
|
|
self.stats[split] = {
|
|
"instance_stats": {"total": int(x.sum()), "per_class": x.sum(0).tolist()},
|
|
"image_stats": {
|
|
"total": len(dataset),
|
|
"unlabelled": int(np.all(x == 0, 1).sum()),
|
|
"per_class": (x > 0).sum(0).tolist(),
|
|
},
|
|
"labels": [{Path(k).name: _round(v)} for k, v in zip(dataset.im_files, dataset.labels)],
|
|
}
|
|
|
|
|
|
if save:
|
|
self.hub_dir.mkdir(parents=True, exist_ok=True)
|
|
stats_path = self.hub_dir / "stats.json"
|
|
LOGGER.info(f"Saving {stats_path.resolve()}...")
|
|
with open(stats_path, "w") as f:
|
|
json.dump(self.stats, f)
|
|
if verbose:
|
|
LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False))
|
|
return self.stats
|
|
|
|
def process_images(self):
|
|
"""Compress images for Ultralytics HUB."""
|
|
from ultralytics.data import YOLODataset
|
|
|
|
self.im_dir.mkdir(parents=True, exist_ok=True)
|
|
for split in "train", "val", "test":
|
|
if self.data.get(split) is None:
|
|
continue
|
|
dataset = YOLODataset(img_path=self.data[split], data=self.data)
|
|
with ThreadPool(NUM_THREADS) as pool:
|
|
for _ in TQDM(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f"{split} images"):
|
|
pass
|
|
LOGGER.info(f"Done. All images saved to {self.im_dir}")
|
|
return self.im_dir
|
|
|
|
|
|
def compress_one_image(f, f_new=None, max_dim=1920, quality=50):
|
|
"""
|
|
Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the Python
|
|
Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will not be
|
|
resized.
|
|
|
|
Args:
|
|
f (str): The path to the input image file.
|
|
f_new (str, optional): The path to the output image file. If not specified, the input file will be overwritten.
|
|
max_dim (int, optional): The maximum dimension (width or height) of the output image. Default is 1920 pixels.
|
|
quality (int, optional): The image compression quality as a percentage. Default is 50%.
|
|
|
|
Example:
|
|
```python
|
|
from pathlib import Path
|
|
from ultralytics.data.utils import compress_one_image
|
|
|
|
for f in Path("path/to/dataset").rglob("*.jpg"):
|
|
compress_one_image(f)
|
|
```
|
|
"""
|
|
try:
|
|
im = Image.open(f)
|
|
r = max_dim / max(im.height, im.width)
|
|
if r < 1.0:
|
|
im = im.resize((int(im.width * r), int(im.height * r)))
|
|
im.save(f_new or f, "JPEG", quality=quality, optimize=True)
|
|
except Exception as e:
|
|
LOGGER.info(f"WARNING ⚠️ HUB ops PIL failure {f}: {e}")
|
|
im = cv2.imread(f)
|
|
im_height, im_width = im.shape[:2]
|
|
r = max_dim / max(im_height, im_width)
|
|
if r < 1.0:
|
|
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
|
|
cv2.imwrite(str(f_new or f), im)
|
|
|
|
|
|
def autosplit(path=DATASETS_DIR / "coco8/images", weights=(0.9, 0.1, 0.0), annotated_only=False):
|
|
"""
|
|
Automatically split a dataset into train/val/test splits and save the resulting splits into autosplit_*.txt files.
|
|
|
|
Args:
|
|
path (Path, optional): Path to images directory. Defaults to DATASETS_DIR / 'coco8/images'.
|
|
weights (list | tuple, optional): Train, validation, and test split fractions. Defaults to (0.9, 0.1, 0.0).
|
|
annotated_only (bool, optional): If True, only images with an associated txt file are used. Defaults to False.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.data.utils import autosplit
|
|
|
|
autosplit()
|
|
```
|
|
"""
|
|
path = Path(path)
|
|
files = sorted(x for x in path.rglob("*.*") if x.suffix[1:].lower() in IMG_FORMATS)
|
|
n = len(files)
|
|
random.seed(0)
|
|
indices = random.choices([0, 1, 2], weights=weights, k=n)
|
|
|
|
txt = ["autosplit_train.txt", "autosplit_val.txt", "autosplit_test.txt"]
|
|
for x in txt:
|
|
if (path.parent / x).exists():
|
|
(path.parent / x).unlink()
|
|
|
|
LOGGER.info(f"Autosplitting images from {path}" + ", using *.txt labeled images only" * annotated_only)
|
|
for i, img in TQDM(zip(indices, files), total=n):
|
|
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():
|
|
with open(path.parent / txt[i], "a") as f:
|
|
f.write(f"./{img.relative_to(path.parent).as_posix()}" + "\n")
|
|
|
|
|
|
def load_dataset_cache_file(path):
|
|
"""Load an Ultralytics *.cache dictionary from path."""
|
|
import gc
|
|
|
|
gc.disable()
|
|
cache = np.load(str(path), allow_pickle=True).item()
|
|
gc.enable()
|
|
return cache
|
|
|
|
|
|
def save_dataset_cache_file(prefix, path, x, version):
|
|
"""Save an Ultralytics dataset *.cache dictionary x to path."""
|
|
x["version"] = version
|
|
if is_dir_writeable(path.parent):
|
|
if path.exists():
|
|
path.unlink()
|
|
np.save(str(path), x)
|
|
path.with_suffix(".cache.npy").rename(path)
|
|
LOGGER.info(f"{prefix}New cache created: {path}")
|
|
else:
|
|
LOGGER.warning(f"{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable, cache not saved.")
|
|
|