|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path: ../datasets/SKU-110K
|
|
train: train.txt
|
|
val: val.txt
|
|
test: test.txt
|
|
|
|
|
|
names:
|
|
0: object
|
|
|
|
|
|
download: |
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
|
|
from ultralytics.utils.downloads import download
|
|
from ultralytics.utils.ops import xyxy2xywh
|
|
|
|
|
|
dir = Path(yaml['path'])
|
|
parent = Path(dir.parent)
|
|
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
|
|
download(urls, dir=parent)
|
|
|
|
|
|
if dir.exists():
|
|
shutil.rmtree(dir)
|
|
(parent / 'SKU110K_fixed').rename(dir)
|
|
(dir / 'labels').mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height'
|
|
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
|
|
x = pd.read_csv(dir / 'annotations' / d, names=names).values
|
|
images, unique_images = x[:, 0], np.unique(x[:, 0])
|
|
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
|
|
f.writelines(f'./images/{s}\n' for s in unique_images)
|
|
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
|
|
cls = 0 # single-class dataset
|
|
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
|
|
for r in x[images == im]:
|
|
w, h = r[6], r[7]
|
|
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0]
|
|
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n")
|
|
|