File size: 2,430 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Ultralytics YOLO 🚀, AGPL-3.0 license

import os
import shutil
import socket
import sys
import tempfile

from . import USER_CONFIG_DIR
from .torch_utils import TORCH_1_9


def find_free_network_port() -> int:
    """

    Finds a free port on localhost.



    It is useful in single-node training when we don't want to connect to a real main node but have to set the

    `MASTER_PORT` environment variable.

    """
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        s.bind(("127.0.0.1", 0))
        return s.getsockname()[1]  # port


def generate_ddp_file(trainer):
    """Generates a DDP file and returns its file name."""
    module, name = f"{trainer.__class__.__module__}.{trainer.__class__.__name__}".rsplit(".", 1)

    content = f"""

# Ultralytics Multi-GPU training temp file (should be automatically deleted after use)

overrides = {vars(trainer.args)}



if __name__ == "__main__":

    from {module} import {name}

    from ultralytics.utils import DEFAULT_CFG_DICT



    cfg = DEFAULT_CFG_DICT.copy()

    cfg.update(save_dir='')   # handle the extra key 'save_dir'

    trainer = {name}(cfg=cfg, overrides=overrides)

    trainer.args.model = "{getattr(trainer.hub_session, 'model_url', trainer.args.model)}"

    results = trainer.train()

"""
    (USER_CONFIG_DIR / "DDP").mkdir(exist_ok=True)
    with tempfile.NamedTemporaryFile(
        prefix="_temp_",
        suffix=f"{id(trainer)}.py",
        mode="w+",
        encoding="utf-8",
        dir=USER_CONFIG_DIR / "DDP",
        delete=False,
    ) as file:
        file.write(content)
    return file.name


def generate_ddp_command(world_size, trainer):
    """Generates and returns command for distributed training."""
    import __main__  # noqa local import to avoid https://github.com/Lightning-AI/lightning/issues/15218

    if not trainer.resume:
        shutil.rmtree(trainer.save_dir)  # remove the save_dir
    file = generate_ddp_file(trainer)
    dist_cmd = "torch.distributed.run" if TORCH_1_9 else "torch.distributed.launch"
    port = find_free_network_port()
    cmd = [sys.executable, "-m", dist_cmd, "--nproc_per_node", f"{world_size}", "--master_port", f"{port}", file]
    return cmd, file


def ddp_cleanup(trainer, file):
    """Delete temp file if created."""
    if f"{id(trainer)}.py" in file:  # if temp_file suffix in file
        os.remove(file)