File size: 18,496 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""Transformer modules."""

import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import constant_, xavier_uniform_

from .conv import Conv
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch

__all__ = (
    "TransformerEncoderLayer",
    "TransformerLayer",
    "TransformerBlock",
    "MLPBlock",
    "LayerNorm2d",
    "AIFI",
    "DeformableTransformerDecoder",
    "DeformableTransformerDecoderLayer",
    "MSDeformAttn",
    "MLP",
)


class TransformerEncoderLayer(nn.Module):
    """Defines a single layer of the transformer encoder."""

    def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
        """Initialize the TransformerEncoderLayer with specified parameters."""
        super().__init__()
        from ...utils.torch_utils import TORCH_1_9

        if not TORCH_1_9:
            raise ModuleNotFoundError(
                "TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True)."
            )
        self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
        # Implementation of Feedforward model
        self.fc1 = nn.Linear(c1, cm)
        self.fc2 = nn.Linear(cm, c1)

        self.norm1 = nn.LayerNorm(c1)
        self.norm2 = nn.LayerNorm(c1)
        self.dropout = nn.Dropout(dropout)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.act = act
        self.normalize_before = normalize_before

    @staticmethod
    def with_pos_embed(tensor, pos=None):
        """Add position embeddings to the tensor if provided."""
        return tensor if pos is None else tensor + pos

    def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
        """Performs forward pass with post-normalization."""
        q = k = self.with_pos_embed(src, pos)
        src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
        src = src + self.dropout2(src2)
        return self.norm2(src)

    def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
        """Performs forward pass with pre-normalization."""
        src2 = self.norm1(src)
        q = k = self.with_pos_embed(src2, pos)
        src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src2 = self.norm2(src)
        src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
        return src + self.dropout2(src2)

    def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
        """Forward propagates the input through the encoder module."""
        if self.normalize_before:
            return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
        return self.forward_post(src, src_mask, src_key_padding_mask, pos)


class AIFI(TransformerEncoderLayer):
    """Defines the AIFI transformer layer."""

    def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
        """Initialize the AIFI instance with specified parameters."""
        super().__init__(c1, cm, num_heads, dropout, act, normalize_before)

    def forward(self, x):
        """Forward pass for the AIFI transformer layer."""
        c, h, w = x.shape[1:]
        pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
        # Flatten [B, C, H, W] to [B, HxW, C]
        x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
        return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()

    @staticmethod
    def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
        """Builds 2D sine-cosine position embedding."""
        assert embed_dim % 4 == 0, "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
        grid_w = torch.arange(w, dtype=torch.float32)
        grid_h = torch.arange(h, dtype=torch.float32)
        grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
        pos_dim = embed_dim // 4
        omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
        omega = 1.0 / (temperature**omega)

        out_w = grid_w.flatten()[..., None] @ omega[None]
        out_h = grid_h.flatten()[..., None] @ omega[None]

        return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]


class TransformerLayer(nn.Module):
    """Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)."""

    def __init__(self, c, num_heads):
        """Initializes a self-attention mechanism using linear transformations and multi-head attention."""
        super().__init__()
        self.q = nn.Linear(c, c, bias=False)
        self.k = nn.Linear(c, c, bias=False)
        self.v = nn.Linear(c, c, bias=False)
        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
        self.fc1 = nn.Linear(c, c, bias=False)
        self.fc2 = nn.Linear(c, c, bias=False)

    def forward(self, x):
        """Apply a transformer block to the input x and return the output."""
        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
        return self.fc2(self.fc1(x)) + x


class TransformerBlock(nn.Module):
    """Vision Transformer https://arxiv.org/abs/2010.11929."""

    def __init__(self, c1, c2, num_heads, num_layers):
        """Initialize a Transformer module with position embedding and specified number of heads and layers."""
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)
        self.linear = nn.Linear(c2, c2)  # learnable position embedding
        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
        self.c2 = c2

    def forward(self, x):
        """Forward propagates the input through the bottleneck module."""
        if self.conv is not None:
            x = self.conv(x)
        b, _, w, h = x.shape
        p = x.flatten(2).permute(2, 0, 1)
        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)


class MLPBlock(nn.Module):
    """Implements a single block of a multi-layer perceptron."""

    def __init__(self, embedding_dim, mlp_dim, act=nn.GELU):
        """Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function."""
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass for the MLPBlock."""
        return self.lin2(self.act(self.lin1(x)))


class MLP(nn.Module):
    """Implements a simple multi-layer perceptron (also called FFN)."""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act=nn.ReLU, sigmoid=False):
        """Initialize the MLP with specified input, hidden, output dimensions and number of layers."""
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
        self.sigmoid = sigmoid
        self.act = act()

    def forward(self, x):
        """Forward pass for the entire MLP."""
        for i, layer in enumerate(self.layers):
            x = getattr(self, "act", nn.ReLU())(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x.sigmoid() if getattr(self, "sigmoid", False) else x


class LayerNorm2d(nn.Module):
    """

    2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.



    Original implementations in

    https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py

    and

    https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py.

    """

    def __init__(self, num_channels, eps=1e-6):
        """Initialize LayerNorm2d with the given parameters."""
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x):
        """Perform forward pass for 2D layer normalization."""
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        return self.weight[:, None, None] * x + self.bias[:, None, None]


class MSDeformAttn(nn.Module):
    """

    Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.



    https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py

    """

    def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
        """Initialize MSDeformAttn with the given parameters."""
        super().__init__()
        if d_model % n_heads != 0:
            raise ValueError(f"d_model must be divisible by n_heads, but got {d_model} and {n_heads}")
        _d_per_head = d_model // n_heads
        # Better to set _d_per_head to a power of 2 which is more efficient in a CUDA implementation
        assert _d_per_head * n_heads == d_model, "`d_model` must be divisible by `n_heads`"

        self.im2col_step = 64

        self.d_model = d_model
        self.n_levels = n_levels
        self.n_heads = n_heads
        self.n_points = n_points

        self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
        self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
        self.value_proj = nn.Linear(d_model, d_model)
        self.output_proj = nn.Linear(d_model, d_model)

        self._reset_parameters()

    def _reset_parameters(self):
        """Reset module parameters."""
        constant_(self.sampling_offsets.weight.data, 0.0)
        thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
        grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
        grid_init = (
            (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
            .view(self.n_heads, 1, 1, 2)
            .repeat(1, self.n_levels, self.n_points, 1)
        )
        for i in range(self.n_points):
            grid_init[:, :, i, :] *= i + 1
        with torch.no_grad():
            self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
        constant_(self.attention_weights.weight.data, 0.0)
        constant_(self.attention_weights.bias.data, 0.0)
        xavier_uniform_(self.value_proj.weight.data)
        constant_(self.value_proj.bias.data, 0.0)
        xavier_uniform_(self.output_proj.weight.data)
        constant_(self.output_proj.bias.data, 0.0)

    def forward(self, query, refer_bbox, value, value_shapes, value_mask=None):
        """

        Perform forward pass for multiscale deformable attention.



        https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py



        Args:

            query (torch.Tensor): [bs, query_length, C]

            refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),

                bottom-right (1, 1), including padding area

            value (torch.Tensor): [bs, value_length, C]

            value_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]

            value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements



        Returns:

            output (Tensor): [bs, Length_{query}, C]

        """
        bs, len_q = query.shape[:2]
        len_v = value.shape[1]
        assert sum(s[0] * s[1] for s in value_shapes) == len_v

        value = self.value_proj(value)
        if value_mask is not None:
            value = value.masked_fill(value_mask[..., None], float(0))
        value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads)
        sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2)
        attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
        attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
        # N, Len_q, n_heads, n_levels, n_points, 2
        num_points = refer_bbox.shape[-1]
        if num_points == 2:
            offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1)
            add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
            sampling_locations = refer_bbox[:, :, None, :, None, :] + add
        elif num_points == 4:
            add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
            sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
        else:
            raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {num_points}.")
        output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
        return self.output_proj(output)


class DeformableTransformerDecoderLayer(nn.Module):
    """

    Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.



    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py

    https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py

    """

    def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0.0, act=nn.ReLU(), n_levels=4, n_points=4):
        """Initialize the DeformableTransformerDecoderLayer with the given parameters."""
        super().__init__()

        # Self attention
        self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # Cross attention
        self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
        self.dropout2 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

        # FFN
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.act = act
        self.dropout3 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout4 = nn.Dropout(dropout)
        self.norm3 = nn.LayerNorm(d_model)

    @staticmethod
    def with_pos_embed(tensor, pos):
        """Add positional embeddings to the input tensor, if provided."""
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, tgt):
        """Perform forward pass through the Feed-Forward Network part of the layer."""
        tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
        tgt = tgt + self.dropout4(tgt2)
        return self.norm3(tgt)

    def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None):
        """Perform the forward pass through the entire decoder layer."""
        # Self attention
        q = k = self.with_pos_embed(embed, query_pos)
        tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), attn_mask=attn_mask)[
            0
        ].transpose(0, 1)
        embed = embed + self.dropout1(tgt)
        embed = self.norm1(embed)

        # Cross attention
        tgt = self.cross_attn(
            self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, padding_mask
        )
        embed = embed + self.dropout2(tgt)
        embed = self.norm2(embed)

        # FFN
        return self.forward_ffn(embed)


class DeformableTransformerDecoder(nn.Module):
    """

    Implementation of Deformable Transformer Decoder based on PaddleDetection.



    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py

    """

    def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
        """Initialize the DeformableTransformerDecoder with the given parameters."""
        super().__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.hidden_dim = hidden_dim
        self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx

    def forward(

        self,

        embed,  # decoder embeddings

        refer_bbox,  # anchor

        feats,  # image features

        shapes,  # feature shapes

        bbox_head,

        score_head,

        pos_mlp,

        attn_mask=None,

        padding_mask=None,

    ):
        """Perform the forward pass through the entire decoder."""
        output = embed
        dec_bboxes = []
        dec_cls = []
        last_refined_bbox = None
        refer_bbox = refer_bbox.sigmoid()
        for i, layer in enumerate(self.layers):
            output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox))

            bbox = bbox_head[i](output)
            refined_bbox = torch.sigmoid(bbox + inverse_sigmoid(refer_bbox))

            if self.training:
                dec_cls.append(score_head[i](output))
                if i == 0:
                    dec_bboxes.append(refined_bbox)
                else:
                    dec_bboxes.append(torch.sigmoid(bbox + inverse_sigmoid(last_refined_bbox)))
            elif i == self.eval_idx:
                dec_cls.append(score_head[i](output))
                dec_bboxes.append(refined_bbox)
                break

            last_refined_bbox = refined_bbox
            refer_bbox = refined_bbox.detach() if self.training else refined_bbox

        return torch.stack(dec_bboxes), torch.stack(dec_cls)