File size: 3,778 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Ultralytics YOLO 🚀, AGPL-3.0 license

import itertools

from ultralytics.data import build_yolo_dataset
from ultralytics.models import yolo
from ultralytics.nn.tasks import WorldModel
from ultralytics.utils import DEFAULT_CFG, RANK, checks
from ultralytics.utils.torch_utils import de_parallel


def on_pretrain_routine_end(trainer):
    """Callback."""
    if RANK in {-1, 0}:
        # NOTE: for evaluation
        names = [name.split("/")[0] for name in list(trainer.test_loader.dataset.data["names"].values())]
        de_parallel(trainer.ema.ema).set_classes(names, cache_clip_model=False)
    device = next(trainer.model.parameters()).device
    trainer.text_model, _ = trainer.clip.load("ViT-B/32", device=device)
    for p in trainer.text_model.parameters():
        p.requires_grad_(False)


class WorldTrainer(yolo.detect.DetectionTrainer):
    """

    A class to fine-tune a world model on a close-set dataset.



    Example:

        ```python

        from ultralytics.models.yolo.world import WorldModel



        args = dict(model="yolov8s-world.pt", data="coco8.yaml", epochs=3)

        trainer = WorldTrainer(overrides=args)

        trainer.train()

        ```

    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """Initialize a WorldTrainer object with given arguments."""
        if overrides is None:
            overrides = {}
        super().__init__(cfg, overrides, _callbacks)

        # Import and assign clip
        try:
            import clip
        except ImportError:
            checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
            import clip
        self.clip = clip

    def get_model(self, cfg=None, weights=None, verbose=True):
        """Return WorldModel initialized with specified config and weights."""
        # NOTE: This `nc` here is the max number of different text samples in one image, rather than the actual `nc`.
        # NOTE: Following the official config, nc hard-coded to 80 for now.
        model = WorldModel(
            cfg["yaml_file"] if isinstance(cfg, dict) else cfg,
            ch=3,
            nc=min(self.data["nc"], 80),
            verbose=verbose and RANK == -1,
        )
        if weights:
            model.load(weights)
        self.add_callback("on_pretrain_routine_end", on_pretrain_routine_end)

        return model

    def build_dataset(self, img_path, mode="train", batch=None):
        """

        Build YOLO Dataset.



        Args:

            img_path (str): Path to the folder containing images.

            mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.

            batch (int, optional): Size of batches, this is for `rect`. Defaults to None.

        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
        return build_yolo_dataset(
            self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs, multi_modal=mode == "train"
        )

    def preprocess_batch(self, batch):
        """Preprocesses a batch of images for YOLOWorld training, adjusting formatting and dimensions as needed."""
        batch = super().preprocess_batch(batch)

        # NOTE: add text features
        texts = list(itertools.chain(*batch["texts"]))
        text_token = self.clip.tokenize(texts).to(batch["img"].device)
        txt_feats = self.text_model.encode_text(text_token).to(dtype=batch["img"].dtype)  # torch.float32
        txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
        batch["txt_feats"] = txt_feats.reshape(len(batch["texts"]), -1, txt_feats.shape[-1])
        return batch