File size: 39,796 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""

Generate predictions using the Segment Anything Model (SAM).



SAM is an advanced image segmentation model offering features like promptable segmentation and zero-shot performance.

This module contains the implementation of the prediction logic and auxiliary utilities required to perform segmentation

using SAM. It forms an integral part of the Ultralytics framework and is designed for high-performance, real-time image

segmentation tasks.

"""

import numpy as np
import torch
import torch.nn.functional as F

from ultralytics.data.augment import LetterBox
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import DEFAULT_CFG, ops
from ultralytics.utils.torch_utils import select_device

from .amg import (
    batch_iterator,
    batched_mask_to_box,
    build_all_layer_point_grids,
    calculate_stability_score,
    generate_crop_boxes,
    is_box_near_crop_edge,
    remove_small_regions,
    uncrop_boxes_xyxy,
    uncrop_masks,
)
from .build import build_sam


class Predictor(BasePredictor):
    """

    Predictor class for SAM, enabling real-time image segmentation with promptable capabilities.



    This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image

    segmentation tasks. It supports various input prompts like points, bounding boxes, and masks for

    fine-grained control over segmentation results.



    Attributes:

        args (SimpleNamespace): Configuration arguments for the predictor.

        model (torch.nn.Module): The loaded SAM model.

        device (torch.device): The device (CPU or GPU) on which the model is loaded.

        im (torch.Tensor): The preprocessed input image.

        features (torch.Tensor): Extracted image features.

        prompts (Dict): Dictionary to store various types of prompts (e.g., bboxes, points, masks).

        segment_all (bool): Flag to indicate if full image segmentation should be performed.

        mean (torch.Tensor): Mean values for image normalization.

        std (torch.Tensor): Standard deviation values for image normalization.



    Methods:

        preprocess: Prepares input images for model inference.

        pre_transform: Performs initial transformations on the input image.

        inference: Performs segmentation inference based on input prompts.

        prompt_inference: Internal function for prompt-based segmentation inference.

        generate: Generates segmentation masks for an entire image.

        setup_model: Initializes the SAM model for inference.

        get_model: Builds and returns a SAM model.

        postprocess: Post-processes model outputs to generate final results.

        setup_source: Sets up the data source for inference.

        set_image: Sets and preprocesses a single image for inference.

        get_im_features: Extracts image features using the SAM image encoder.

        set_prompts: Sets prompts for subsequent inference.

        reset_image: Resets the current image and its features.

        remove_small_regions: Removes small disconnected regions and holes from masks.



    Examples:

        >>> predictor = Predictor()

        >>> predictor.setup_model(model_path="sam_model.pt")

        >>> predictor.set_image("image.jpg")

        >>> masks, scores, boxes = predictor.generate()

        >>> results = predictor.postprocess((masks, scores, boxes), im, orig_img)

    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """

        Initialize the Predictor with configuration, overrides, and callbacks.



        Sets up the Predictor object for SAM (Segment Anything Model) and applies any configuration overrides or

        callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True

        for optimal results.



        Args:

            cfg (Dict): Configuration dictionary containing default settings.

            overrides (Dict | None): Dictionary of values to override default configuration.

            _callbacks (Dict | None): Dictionary of callback functions to customize behavior.



        Examples:

            >>> predictor = Predictor(cfg=DEFAULT_CFG)

            >>> predictor = Predictor(overrides={"imgsz": 640})

            >>> predictor = Predictor(_callbacks={"on_predict_start": custom_callback})

        """
        if overrides is None:
            overrides = {}
        overrides.update(dict(task="segment", mode="predict"))
        super().__init__(cfg, overrides, _callbacks)
        self.args.retina_masks = True
        self.im = None
        self.features = None
        self.prompts = {}
        self.segment_all = False

    def preprocess(self, im):
        """

        Preprocess the input image for model inference.



        This method prepares the input image by applying transformations and normalization. It supports both

        torch.Tensor and list of np.ndarray as input formats.



        Args:

            im (torch.Tensor | List[np.ndarray]): Input image(s) in BCHW tensor format or list of HWC numpy arrays.



        Returns:

            (torch.Tensor): The preprocessed image tensor, normalized and converted to the appropriate dtype.



        Examples:

            >>> predictor = Predictor()

            >>> image = torch.rand(1, 3, 640, 640)

            >>> preprocessed_image = predictor.preprocess(image)

        """
        if self.im is not None:
            return self.im
        not_tensor = not isinstance(im, torch.Tensor)
        if not_tensor:
            im = np.stack(self.pre_transform(im))
            im = im[..., ::-1].transpose((0, 3, 1, 2))
            im = np.ascontiguousarray(im)
            im = torch.from_numpy(im)

        im = im.to(self.device)
        im = im.half() if self.model.fp16 else im.float()
        if not_tensor:
            im = (im - self.mean) / self.std
        return im

    def pre_transform(self, im):
        """

        Perform initial transformations on the input image for preprocessing.



        This method applies transformations such as resizing to prepare the image for further preprocessing.

        Currently, batched inference is not supported; hence the list length should be 1.



        Args:

            im (List[np.ndarray]): List containing a single image in HWC numpy array format.



        Returns:

            (List[np.ndarray]): List containing the transformed image.



        Raises:

            AssertionError: If the input list contains more than one image.



        Examples:

            >>> predictor = Predictor()

            >>> image = np.random.rand(480, 640, 3)  # Single HWC image

            >>> transformed = predictor.pre_transform([image])

            >>> print(len(transformed))

            1

        """
        assert len(im) == 1, "SAM model does not currently support batched inference"
        letterbox = LetterBox(self.args.imgsz, auto=False, center=False)
        return [letterbox(image=x) for x in im]

    def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs):
        """

        Perform image segmentation inference based on the given input cues, using the currently loaded image.



        This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt

        encoder, and mask decoder for real-time and promptable segmentation tasks.



        Args:

            im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).

            bboxes (np.ndarray | List | None): Bounding boxes with shape (N, 4), in XYXY format.

            points (np.ndarray | List | None): Points indicating object locations with shape (N, 2), in pixels.

            labels (np.ndarray | List | None): Labels for point prompts, shape (N,). 1 = foreground, 0 = background.

            masks (np.ndarray | None): Low-resolution masks from previous predictions, shape (N, H, W). For SAM H=W=256.

            multimask_output (bool): Flag to return multiple masks. Helpful for ambiguous prompts.

            *args (Any): Additional positional arguments.

            **kwargs (Any): Additional keyword arguments.



        Returns:

            (tuple): Contains the following three elements:

                - np.ndarray: The output masks in shape (C, H, W), where C is the number of generated masks.

                - np.ndarray: An array of length C containing quality scores predicted by the model for each mask.

                - np.ndarray: Low-resolution logits of shape (C, H, W) for subsequent inference, where H=W=256.



        Examples:

            >>> predictor = Predictor()

            >>> predictor.setup_model(model_path="sam_model.pt")

            >>> predictor.set_image("image.jpg")

            >>> masks, scores, logits = predictor.inference(im, bboxes=[[0, 0, 100, 100]])

        """
        # Override prompts if any stored in self.prompts
        bboxes = self.prompts.pop("bboxes", bboxes)
        points = self.prompts.pop("points", points)
        masks = self.prompts.pop("masks", masks)
        labels = self.prompts.pop("labels", labels)

        if all(i is None for i in [bboxes, points, masks]):
            return self.generate(im, *args, **kwargs)

        return self.prompt_inference(im, bboxes, points, labels, masks, multimask_output)

    def prompt_inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False):
        """

        Performs image segmentation inference based on input cues using SAM's specialized architecture.



        This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation.

        It processes various input prompts such as bounding boxes, points, and masks to generate segmentation masks.



        Args:

            im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).

            bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).

            points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.

            labels (np.ndarray | List | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground, 0 for background.

            masks (np.ndarray | None): Low-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256.

            multimask_output (bool): Flag to return multiple masks for ambiguous prompts.



        Raises:

            AssertionError: If the number of points don't match the number of labels, in case labels were passed.



        Returns:

            (tuple): Tuple containing:

                - np.ndarray: Output masks with shape (C, H, W), where C is the number of generated masks.

                - np.ndarray: Quality scores predicted by the model for each mask, with length C.

                - np.ndarray: Low-resolution logits with shape (C, H, W) for subsequent inference, where H=W=256.



        Examples:

            >>> predictor = Predictor()

            >>> im = torch.rand(1, 3, 1024, 1024)

            >>> bboxes = [[100, 100, 200, 200]]

            >>> masks, scores, logits = predictor.prompt_inference(im, bboxes=bboxes)

        """
        features = self.get_im_features(im) if self.features is None else self.features

        src_shape, dst_shape = self.batch[1][0].shape[:2], im.shape[2:]
        r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
        # Transform input prompts
        if points is not None:
            points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
            points = points[None] if points.ndim == 1 else points
            # Assuming labels are all positive if users don't pass labels.
            if labels is None:
                labels = np.ones(points.shape[:-1])
            labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
            assert (
                points.shape[-2] == labels.shape[-1]
            ), f"Number of points {points.shape[-2]} should match number of labels {labels.shape[-1]}."
            points *= r
            if points.ndim == 2:
                # (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
                points, labels = points[:, None, :], labels[:, None]
        if bboxes is not None:
            bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
            bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
            bboxes *= r
        if masks is not None:
            masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)

        points = (points, labels) if points is not None else None
        # Embed prompts
        sparse_embeddings, dense_embeddings = self.model.prompt_encoder(points=points, boxes=bboxes, masks=masks)

        # Predict masks
        pred_masks, pred_scores = self.model.mask_decoder(
            image_embeddings=features,
            image_pe=self.model.prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
        )

        # (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
        # `d` could be 1 or 3 depends on `multimask_output`.
        return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)

    def generate(

        self,

        im,

        crop_n_layers=0,

        crop_overlap_ratio=512 / 1500,

        crop_downscale_factor=1,

        point_grids=None,

        points_stride=32,

        points_batch_size=64,

        conf_thres=0.88,

        stability_score_thresh=0.95,

        stability_score_offset=0.95,

        crop_nms_thresh=0.7,

    ):
        """

        Perform image segmentation using the Segment Anything Model (SAM).



        This method segments an entire image into constituent parts by leveraging SAM's advanced architecture

        and real-time performance capabilities. It can optionally work on image crops for finer segmentation.



        Args:

            im (torch.Tensor): Input tensor representing the preprocessed image with shape (N, C, H, W).

            crop_n_layers (int): Number of layers for additional mask predictions on image crops.

            crop_overlap_ratio (float): Overlap between crops, scaled down in subsequent layers.

            crop_downscale_factor (int): Scaling factor for sampled points-per-side in each layer.

            point_grids (List[np.ndarray] | None): Custom grids for point sampling normalized to [0,1].

            points_stride (int): Number of points to sample along each side of the image.

            points_batch_size (int): Batch size for the number of points processed simultaneously.

            conf_thres (float): Confidence threshold [0,1] for filtering based on mask quality prediction.

            stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on stability.

            stability_score_offset (float): Offset value for calculating stability score.

            crop_nms_thresh (float): IoU cutoff for NMS to remove duplicate masks between crops.



        Returns:

            (Tuple[torch.Tensor, torch.Tensor, torch.Tensor]): A tuple containing:

                - pred_masks (torch.Tensor): Segmented masks with shape (N, H, W).

                - pred_scores (torch.Tensor): Confidence scores for each mask with shape (N,).

                - pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 4).



        Examples:

            >>> predictor = Predictor()

            >>> im = torch.rand(1, 3, 1024, 1024)  # Example input image

            >>> masks, scores, boxes = predictor.generate(im)

        """
        import torchvision  # scope for faster 'import ultralytics'

        self.segment_all = True
        ih, iw = im.shape[2:]
        crop_regions, layer_idxs = generate_crop_boxes((ih, iw), crop_n_layers, crop_overlap_ratio)
        if point_grids is None:
            point_grids = build_all_layer_point_grids(points_stride, crop_n_layers, crop_downscale_factor)
        pred_masks, pred_scores, pred_bboxes, region_areas = [], [], [], []
        for crop_region, layer_idx in zip(crop_regions, layer_idxs):
            x1, y1, x2, y2 = crop_region
            w, h = x2 - x1, y2 - y1
            area = torch.tensor(w * h, device=im.device)
            points_scale = np.array([[w, h]])  # w, h
            # Crop image and interpolate to input size
            crop_im = F.interpolate(im[..., y1:y2, x1:x2], (ih, iw), mode="bilinear", align_corners=False)
            # (num_points, 2)
            points_for_image = point_grids[layer_idx] * points_scale
            crop_masks, crop_scores, crop_bboxes = [], [], []
            for (points,) in batch_iterator(points_batch_size, points_for_image):
                pred_mask, pred_score = self.prompt_inference(crop_im, points=points, multimask_output=True)
                # Interpolate predicted masks to input size
                pred_mask = F.interpolate(pred_mask[None], (h, w), mode="bilinear", align_corners=False)[0]
                idx = pred_score > conf_thres
                pred_mask, pred_score = pred_mask[idx], pred_score[idx]

                stability_score = calculate_stability_score(
                    pred_mask, self.model.mask_threshold, stability_score_offset
                )
                idx = stability_score > stability_score_thresh
                pred_mask, pred_score = pred_mask[idx], pred_score[idx]
                # Bool type is much more memory-efficient.
                pred_mask = pred_mask > self.model.mask_threshold
                # (N, 4)
                pred_bbox = batched_mask_to_box(pred_mask).float()
                keep_mask = ~is_box_near_crop_edge(pred_bbox, crop_region, [0, 0, iw, ih])
                if not torch.all(keep_mask):
                    pred_bbox, pred_mask, pred_score = pred_bbox[keep_mask], pred_mask[keep_mask], pred_score[keep_mask]

                crop_masks.append(pred_mask)
                crop_bboxes.append(pred_bbox)
                crop_scores.append(pred_score)

            # Do nms within this crop
            crop_masks = torch.cat(crop_masks)
            crop_bboxes = torch.cat(crop_bboxes)
            crop_scores = torch.cat(crop_scores)
            keep = torchvision.ops.nms(crop_bboxes, crop_scores, self.args.iou)  # NMS
            crop_bboxes = uncrop_boxes_xyxy(crop_bboxes[keep], crop_region)
            crop_masks = uncrop_masks(crop_masks[keep], crop_region, ih, iw)
            crop_scores = crop_scores[keep]

            pred_masks.append(crop_masks)
            pred_bboxes.append(crop_bboxes)
            pred_scores.append(crop_scores)
            region_areas.append(area.expand(len(crop_masks)))

        pred_masks = torch.cat(pred_masks)
        pred_bboxes = torch.cat(pred_bboxes)
        pred_scores = torch.cat(pred_scores)
        region_areas = torch.cat(region_areas)

        # Remove duplicate masks between crops
        if len(crop_regions) > 1:
            scores = 1 / region_areas
            keep = torchvision.ops.nms(pred_bboxes, scores, crop_nms_thresh)
            pred_masks, pred_bboxes, pred_scores = pred_masks[keep], pred_bboxes[keep], pred_scores[keep]

        return pred_masks, pred_scores, pred_bboxes

    def setup_model(self, model, verbose=True):
        """

        Initializes the Segment Anything Model (SAM) for inference.



        This method sets up the SAM model by allocating it to the appropriate device and initializing the necessary

        parameters for image normalization and other Ultralytics compatibility settings.



        Args:

            model (torch.nn.Module): A pre-trained SAM model. If None, a model will be built based on configuration.

            verbose (bool): If True, prints selected device information.



        Examples:

            >>> predictor = Predictor()

            >>> predictor.setup_model(model=sam_model, verbose=True)

        """
        device = select_device(self.args.device, verbose=verbose)
        if model is None:
            model = self.get_model()
        model.eval()
        self.model = model.to(device)
        self.device = device
        self.mean = torch.tensor([123.675, 116.28, 103.53]).view(-1, 1, 1).to(device)
        self.std = torch.tensor([58.395, 57.12, 57.375]).view(-1, 1, 1).to(device)

        # Ultralytics compatibility settings
        self.model.pt = False
        self.model.triton = False
        self.model.stride = 32
        self.model.fp16 = False
        self.done_warmup = True

    def get_model(self):
        """Retrieves or builds the Segment Anything Model (SAM) for image segmentation tasks."""
        return build_sam(self.args.model)

    def postprocess(self, preds, img, orig_imgs):
        """

        Post-processes SAM's inference outputs to generate object detection masks and bounding boxes.



        This method scales masks and boxes to the original image size and applies a threshold to the mask

        predictions. It leverages SAM's advanced architecture for real-time, promptable segmentation tasks.



        Args:

            preds (Tuple[torch.Tensor]): The output from SAM model inference, containing:

                - pred_masks (torch.Tensor): Predicted masks with shape (N, 1, H, W).

                - pred_scores (torch.Tensor): Confidence scores for each mask with shape (N, 1).

                - pred_bboxes (torch.Tensor, optional): Predicted bounding boxes if segment_all is True.

            img (torch.Tensor): The processed input image tensor with shape (C, H, W).

            orig_imgs (List[np.ndarray] | torch.Tensor): The original, unprocessed images.



        Returns:

            (List[Results]): List of Results objects containing detection masks, bounding boxes, and other

                metadata for each processed image.



        Examples:

            >>> predictor = Predictor()

            >>> preds = predictor.inference(img)

            >>> results = predictor.postprocess(preds, img, orig_imgs)

        """
        # (N, 1, H, W), (N, 1)
        pred_masks, pred_scores = preds[:2]
        pred_bboxes = preds[2] if self.segment_all else None
        names = dict(enumerate(str(i) for i in range(len(pred_masks))))

        if not isinstance(orig_imgs, list):  # input images are a torch.Tensor, not a list
            orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)

        results = []
        for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]):
            if len(masks) == 0:
                masks = None
            else:
                masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
                masks = masks > self.model.mask_threshold  # to bool
                if pred_bboxes is not None:
                    pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
                else:
                    pred_bboxes = batched_mask_to_box(masks)
                # NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
                cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device)
                pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)
            results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=pred_bboxes))
        # Reset segment-all mode.
        self.segment_all = False
        return results

    def setup_source(self, source):
        """

        Sets up the data source for inference.



        This method configures the data source from which images will be fetched for inference. It supports

        various input types such as image files, directories, video files, and other compatible data sources.



        Args:

            source (str | Path | None): The path or identifier for the image data source. Can be a file path,

                directory path, URL, or other supported source types.



        Examples:

            >>> predictor = Predictor()

            >>> predictor.setup_source("path/to/images")

            >>> predictor.setup_source("video.mp4")

            >>> predictor.setup_source(None)  # Uses default source if available



        Notes:

            - If source is None, the method may use a default source if configured.

            - The method adapts to different source types and prepares them for subsequent inference steps.

            - Supported source types may include local files, directories, URLs, and video streams.

        """
        if source is not None:
            super().setup_source(source)

    def set_image(self, image):
        """

        Preprocesses and sets a single image for inference.



        This method prepares the model for inference on a single image by setting up the model if not already

        initialized, configuring the data source, and preprocessing the image for feature extraction. It

        ensures that only one image is set at a time and extracts image features for subsequent use.



        Args:

            image (str | np.ndarray): Path to the image file as a string, or a numpy array representing

                an image read by cv2.



        Raises:

            AssertionError: If more than one image is attempted to be set.



        Examples:

            >>> predictor = Predictor()

            >>> predictor.set_image("path/to/image.jpg")

            >>> predictor.set_image(cv2.imread("path/to/image.jpg"))



        Notes:

            - This method should be called before performing inference on a new image.

            - The extracted features are stored in the `self.features` attribute for later use.

        """
        if self.model is None:
            self.setup_model(model=None)
        self.setup_source(image)
        assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
        for batch in self.dataset:
            im = self.preprocess(batch[1])
            self.features = self.get_im_features(im)
            break

    def get_im_features(self, im):
        """Extracts image features using the SAM model's image encoder for subsequent mask prediction."""
        assert (
            isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1]
        ), f"SAM models only support square image size, but got {self.imgsz}."
        self.model.set_imgsz(self.imgsz)
        return self.model.image_encoder(im)

    def set_prompts(self, prompts):
        """Sets prompts for subsequent inference operations."""
        self.prompts = prompts

    def reset_image(self):
        """Resets the current image and its features, clearing them for subsequent inference."""
        self.im = None
        self.features = None

    @staticmethod
    def remove_small_regions(masks, min_area=0, nms_thresh=0.7):
        """

        Remove small disconnected regions and holes from segmentation masks.



        This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM).

        It removes small disconnected regions and holes from the input masks, and then performs Non-Maximum

        Suppression (NMS) to eliminate any newly created duplicate boxes.



        Args:

            masks (torch.Tensor): Segmentation masks to be processed, with shape (N, H, W) where N is the number of

                masks, H is height, and W is width.

            min_area (int): Minimum area threshold for removing disconnected regions and holes. Regions smaller than

                this will be removed.

            nms_thresh (float): IoU threshold for the NMS algorithm to remove duplicate boxes.



        Returns:

            (tuple):

                - new_masks (torch.Tensor): Processed masks with small regions removed, shape (N, H, W).

                - keep (List[int]): Indices of remaining masks after NMS, for filtering corresponding boxes.



        Examples:

            >>> masks = torch.rand(5, 640, 640) > 0.5  # 5 random binary masks

            >>> new_masks, keep = remove_small_regions(masks, min_area=100, nms_thresh=0.7)

            >>> print(f"Original masks: {masks.shape}, Processed masks: {new_masks.shape}")

            >>> print(f"Indices of kept masks: {keep}")

        """
        import torchvision  # scope for faster 'import ultralytics'

        if len(masks) == 0:
            return masks

        # Filter small disconnected regions and holes
        new_masks = []
        scores = []
        for mask in masks:
            mask = mask.cpu().numpy().astype(np.uint8)
            mask, changed = remove_small_regions(mask, min_area, mode="holes")
            unchanged = not changed
            mask, changed = remove_small_regions(mask, min_area, mode="islands")
            unchanged = unchanged and not changed

            new_masks.append(torch.as_tensor(mask).unsqueeze(0))
            # Give score=0 to changed masks and 1 to unchanged masks so NMS prefers masks not needing postprocessing
            scores.append(float(unchanged))

        # Recalculate boxes and remove any new duplicates
        new_masks = torch.cat(new_masks, dim=0)
        boxes = batched_mask_to_box(new_masks)
        keep = torchvision.ops.nms(boxes.float(), torch.as_tensor(scores), nms_thresh)

        return new_masks[keep].to(device=masks.device, dtype=masks.dtype), keep


class SAM2Predictor(Predictor):
    """

    SAM2Predictor class for advanced image segmentation using Segment Anything Model 2 architecture.



    This class extends the base Predictor class to implement SAM2-specific functionality for image

    segmentation tasks. It provides methods for model initialization, feature extraction, and

    prompt-based inference.



    Attributes:

        _bb_feat_sizes (List[Tuple[int, int]]): Feature sizes for different backbone levels.

        model (torch.nn.Module): The loaded SAM2 model.

        device (torch.device): The device (CPU or GPU) on which the model is loaded.

        features (Dict[str, torch.Tensor]): Cached image features for efficient inference.

        segment_all (bool): Flag to indicate if all segments should be predicted.

        prompts (Dict): Dictionary to store various types of prompts for inference.



    Methods:

        get_model: Retrieves and initializes the SAM2 model.

        prompt_inference: Performs image segmentation inference based on various prompts.

        set_image: Preprocesses and sets a single image for inference.

        get_im_features: Extracts and processes image features using SAM2's image encoder.



    Examples:

        >>> predictor = SAM2Predictor(cfg)

        >>> predictor.set_image("path/to/image.jpg")

        >>> bboxes = [[100, 100, 200, 200]]

        >>> masks, scores, _ = predictor.prompt_inference(predictor.im, bboxes=bboxes)

        >>> print(f"Predicted {len(masks)} masks with average score {scores.mean():.2f}")

    """

    _bb_feat_sizes = [
        (256, 256),
        (128, 128),
        (64, 64),
    ]

    def get_model(self):
        """Retrieves and initializes the Segment Anything Model 2 (SAM2) for image segmentation tasks."""
        return build_sam(self.args.model)

    def prompt_inference(

        self,

        im,

        bboxes=None,

        points=None,

        labels=None,

        masks=None,

        multimask_output=False,

        img_idx=-1,

    ):
        """

        Performs image segmentation inference based on various prompts using SAM2 architecture.



        This method leverages the Segment Anything Model 2 (SAM2) to generate segmentation masks for input images

        based on provided prompts such as bounding boxes, points, or existing masks. It supports both single and

        multi-object prediction scenarios.



        Args:

            im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).

            bboxes (np.ndarray | List[List[float]] | None): Bounding boxes in XYXY format with shape (N, 4).

            points (np.ndarray | List[List[float]] | None): Object location points with shape (N, 2), in pixels.

            labels (np.ndarray | List[int] | None): Point prompt labels with shape (N,). 1 = foreground, 0 = background.

            masks (np.ndarray | None): Low-resolution masks from previous predictions with shape (N, H, W).

            multimask_output (bool): Flag to return multiple masks for ambiguous prompts.

            img_idx (int): Index of the image in the batch to process.



        Returns:

            (tuple): Tuple containing:

                - np.ndarray: Output masks with shape (C, H, W), where C is the number of generated masks.

                - np.ndarray: Quality scores for each mask, with length C.

                - np.ndarray: Low-resolution logits with shape (C, 256, 256) for subsequent inference.



        Examples:

            >>> predictor = SAM2Predictor(cfg)

            >>> image = torch.rand(1, 3, 640, 640)

            >>> bboxes = [[100, 100, 200, 200]]

            >>> masks, scores, logits = predictor.prompt_inference(image, bboxes=bboxes)

            >>> print(f"Generated {masks.shape[0]} masks with average score {scores.mean():.2f}")



        Notes:

            - The method supports batched inference for multiple objects when points or bboxes are provided.

            - Input prompts (bboxes, points) are automatically scaled to match the input image dimensions.

            - When both bboxes and points are provided, they are merged into a single 'points' input for the model.



        References:

            - SAM2 Paper: [Add link to SAM2 paper when available]

        """
        features = self.get_im_features(im) if self.features is None else self.features

        src_shape, dst_shape = self.batch[1][0].shape[:2], im.shape[2:]
        r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
        # Transform input prompts
        if points is not None:
            points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
            points = points[None] if points.ndim == 1 else points
            # Assuming labels are all positive if users don't pass labels.
            if labels is None:
                labels = torch.ones(points.shape[0])
            labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
            points *= r
            # (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
            points, labels = points[:, None], labels[:, None]
        if bboxes is not None:
            bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
            bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
            bboxes = bboxes.view(-1, 2, 2) * r
            bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(len(bboxes), -1)
            # NOTE: merge "boxes" and "points" into a single "points" input
            # (where boxes are added at the beginning) to model.sam_prompt_encoder
            if points is not None:
                points = torch.cat([bboxes, points], dim=1)
                labels = torch.cat([bbox_labels, labels], dim=1)
            else:
                points, labels = bboxes, bbox_labels
        if masks is not None:
            masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)

        points = (points, labels) if points is not None else None

        sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
            points=points,
            boxes=None,
            masks=masks,
        )
        # Predict masks
        batched_mode = points is not None and points[0].shape[0] > 1  # multi object prediction
        high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in features["high_res_feats"]]
        pred_masks, pred_scores, _, _ = self.model.sam_mask_decoder(
            image_embeddings=features["image_embed"][img_idx].unsqueeze(0),
            image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
            repeat_image=batched_mode,
            high_res_features=high_res_features,
        )
        # (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
        # `d` could be 1 or 3 depends on `multimask_output`.
        return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)

    def set_image(self, image):
        """

        Preprocesses and sets a single image for inference using the SAM2 model.



        This method initializes the model if not already done, configures the data source to the specified image,

        and preprocesses the image for feature extraction. It supports setting only one image at a time.



        Args:

            image (str | np.ndarray): Path to the image file as a string, or a numpy array representing the image.



        Raises:

            AssertionError: If more than one image is attempted to be set.



        Examples:

            >>> predictor = SAM2Predictor()

            >>> predictor.set_image("path/to/image.jpg")

            >>> predictor.set_image(np.array([...]))  # Using a numpy array



        Notes:

            - This method must be called before performing any inference on a new image.

            - The method caches the extracted features for efficient subsequent inferences on the same image.

            - Only one image can be set at a time. To process multiple images, call this method for each new image.

        """
        if self.model is None:
            self.setup_model(model=None)
        self.setup_source(image)
        assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
        for batch in self.dataset:
            im = self.preprocess(batch[1])
            self.features = self.get_im_features(im)
            break

    def get_im_features(self, im):
        """Extracts image features from the SAM image encoder for subsequent processing."""
        assert (
            isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1]
        ), f"SAM 2 models only support square image size, but got {self.imgsz}."
        self.model.set_imgsz(self.imgsz)
        self._bb_feat_sizes = [[x // (4 * i) for x in self.imgsz] for i in [1, 2, 4]]

        backbone_out = self.model.forward_image(im)
        _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
        if self.model.directly_add_no_mem_embed:
            vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
        feats = [
            feat.permute(1, 2, 0).view(1, -1, *feat_size)
            for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
        ][::-1]
        return {"image_embed": feats[-1], "high_res_feats": feats[:-1]}