File size: 12,079 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""

Module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection, instance

segmentation, image classification, pose estimation, and multi-object tracking.



Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters

that yield the best model performance. This is particularly crucial in deep learning models like YOLO,

where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency.



Example:

    Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.

    ```python

    from ultralytics import YOLO



    model = YOLO("yolo11n.pt")

    model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)

    ```

"""

import random
import shutil
import subprocess
import time

import numpy as np
import torch

from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, remove_colorstr, yaml_print, yaml_save
from ultralytics.utils.plotting import plot_tune_results


class Tuner:
    """

    Class responsible for hyperparameter tuning of YOLO models.



    The class evolves YOLO model hyperparameters over a given number of iterations

    by mutating them according to the search space and retraining the model to evaluate their performance.



    Attributes:

        space (dict): Hyperparameter search space containing bounds and scaling factors for mutation.

        tune_dir (Path): Directory where evolution logs and results will be saved.

        tune_csv (Path): Path to the CSV file where evolution logs are saved.



    Methods:

        _mutate(hyp: dict) -> dict:

            Mutates the given hyperparameters within the bounds specified in `self.space`.



        __call__():

            Executes the hyperparameter evolution across multiple iterations.



    Example:

        Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.

        ```python

        from ultralytics import YOLO



        model = YOLO("yolo11n.pt")

        model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)

        ```



        Tune with custom search space.

        ```python

        from ultralytics import YOLO



        model = YOLO("yolo11n.pt")

        model.tune(space={key1: val1, key2: val2})  # custom search space dictionary

        ```

    """

    def __init__(self, args=DEFAULT_CFG, _callbacks=None):
        """

        Initialize the Tuner with configurations.



        Args:

            args (dict, optional): Configuration for hyperparameter evolution.

        """
        self.space = args.pop("space", None) or {  # key: (min, max, gain(optional))
            # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
            "lr0": (1e-5, 1e-1),  # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
            "lrf": (0.0001, 0.1),  # final OneCycleLR learning rate (lr0 * lrf)
            "momentum": (0.7, 0.98, 0.3),  # SGD momentum/Adam beta1
            "weight_decay": (0.0, 0.001),  # optimizer weight decay 5e-4
            "warmup_epochs": (0.0, 5.0),  # warmup epochs (fractions ok)
            "warmup_momentum": (0.0, 0.95),  # warmup initial momentum
            "box": (1.0, 20.0),  # box loss gain
            "cls": (0.2, 4.0),  # cls loss gain (scale with pixels)
            "dfl": (0.4, 6.0),  # dfl loss gain
            "hsv_h": (0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            "hsv_s": (0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
            "hsv_v": (0.0, 0.9),  # image HSV-Value augmentation (fraction)
            "degrees": (0.0, 45.0),  # image rotation (+/- deg)
            "translate": (0.0, 0.9),  # image translation (+/- fraction)
            "scale": (0.0, 0.95),  # image scale (+/- gain)
            "shear": (0.0, 10.0),  # image shear (+/- deg)
            "perspective": (0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            "flipud": (0.0, 1.0),  # image flip up-down (probability)
            "fliplr": (0.0, 1.0),  # image flip left-right (probability)
            "bgr": (0.0, 1.0),  # image channel bgr (probability)
            "mosaic": (0.0, 1.0),  # image mixup (probability)
            "mixup": (0.0, 1.0),  # image mixup (probability)
            "copy_paste": (0.0, 1.0),  # segment copy-paste (probability)
        }
        self.args = get_cfg(overrides=args)
        self.tune_dir = get_save_dir(self.args, name="tune")
        self.tune_csv = self.tune_dir / "tune_results.csv"
        self.callbacks = _callbacks or callbacks.get_default_callbacks()
        self.prefix = colorstr("Tuner: ")
        callbacks.add_integration_callbacks(self)
        LOGGER.info(
            f"{self.prefix}Initialized Tuner instance with 'tune_dir={self.tune_dir}'\n"
            f"{self.prefix}💡 Learn about tuning at https://docs.ultralytics.com/guides/hyperparameter-tuning"
        )

    def _mutate(self, parent="single", n=5, mutation=0.8, sigma=0.2):
        """

        Mutates the hyperparameters based on bounds and scaling factors specified in `self.space`.



        Args:

            parent (str): Parent selection method: 'single' or 'weighted'.

            n (int): Number of parents to consider.

            mutation (float): Probability of a parameter mutation in any given iteration.

            sigma (float): Standard deviation for Gaussian random number generator.



        Returns:

            (dict): A dictionary containing mutated hyperparameters.

        """
        if self.tune_csv.exists():  # if CSV file exists: select best hyps and mutate
            # Select parent(s)
            x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
            fitness = x[:, 0]  # first column
            n = min(n, len(x))  # number of previous results to consider
            x = x[np.argsort(-fitness)][:n]  # top n mutations
            w = x[:, 0] - x[:, 0].min() + 1e-6  # weights (sum > 0)
            if parent == "single" or len(x) == 1:
                # x = x[random.randint(0, n - 1)]  # random selection
                x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
            elif parent == "weighted":
                x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

            # Mutate
            r = np.random  # method
            r.seed(int(time.time()))
            g = np.array([v[2] if len(v) == 3 else 1.0 for k, v in self.space.items()])  # gains 0-1
            ng = len(self.space)
            v = np.ones(ng)
            while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                v = (g * (r.random(ng) < mutation) * r.randn(ng) * r.random() * sigma + 1).clip(0.3, 3.0)
            hyp = {k: float(x[i + 1] * v[i]) for i, k in enumerate(self.space.keys())}
        else:
            hyp = {k: getattr(self.args, k) for k in self.space.keys()}

        # Constrain to limits
        for k, v in self.space.items():
            hyp[k] = max(hyp[k], v[0])  # lower limit
            hyp[k] = min(hyp[k], v[1])  # upper limit
            hyp[k] = round(hyp[k], 5)  # significant digits

        return hyp

    def __call__(self, model=None, iterations=10, cleanup=True):
        """

        Executes the hyperparameter evolution process when the Tuner instance is called.



        This method iterates through the number of iterations, performing the following steps in each iteration:

        1. Load the existing hyperparameters or initialize new ones.

        2. Mutate the hyperparameters using the `mutate` method.

        3. Train a YOLO model with the mutated hyperparameters.

        4. Log the fitness score and mutated hyperparameters to a CSV file.



        Args:

           model (Model): A pre-initialized YOLO model to be used for training.

           iterations (int): The number of generations to run the evolution for.

           cleanup (bool): Whether to delete iteration weights to reduce storage space used during tuning.



        Note:

           The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores.

           Ensure this path is set correctly in the Tuner instance.

        """
        t0 = time.time()
        best_save_dir, best_metrics = None, None
        (self.tune_dir / "weights").mkdir(parents=True, exist_ok=True)
        for i in range(iterations):
            # Mutate hyperparameters
            mutated_hyp = self._mutate()
            LOGGER.info(f"{self.prefix}Starting iteration {i + 1}/{iterations} with hyperparameters: {mutated_hyp}")

            metrics = {}
            train_args = {**vars(self.args), **mutated_hyp}
            save_dir = get_save_dir(get_cfg(train_args))
            weights_dir = save_dir / "weights"
            try:
                # Train YOLO model with mutated hyperparameters (run in subprocess to avoid dataloader hang)
                cmd = ["yolo", "train", *(f"{k}={v}" for k, v in train_args.items())]
                return_code = subprocess.run(cmd, check=True).returncode
                ckpt_file = weights_dir / ("best.pt" if (weights_dir / "best.pt").exists() else "last.pt")
                metrics = torch.load(ckpt_file)["train_metrics"]
                assert return_code == 0, "training failed"

            except Exception as e:
                LOGGER.warning(f"WARNING ❌️ training failure for hyperparameter tuning iteration {i + 1}\n{e}")

            # Save results and mutated_hyp to CSV
            fitness = metrics.get("fitness", 0.0)
            log_row = [round(fitness, 5)] + [mutated_hyp[k] for k in self.space.keys()]
            headers = "" if self.tune_csv.exists() else (",".join(["fitness"] + list(self.space.keys())) + "\n")
            with open(self.tune_csv, "a") as f:
                f.write(headers + ",".join(map(str, log_row)) + "\n")

            # Get best results
            x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
            fitness = x[:, 0]  # first column
            best_idx = fitness.argmax()
            best_is_current = best_idx == i
            if best_is_current:
                best_save_dir = save_dir
                best_metrics = {k: round(v, 5) for k, v in metrics.items()}
                for ckpt in weights_dir.glob("*.pt"):
                    shutil.copy2(ckpt, self.tune_dir / "weights")
            elif cleanup:
                shutil.rmtree(weights_dir, ignore_errors=True)  # remove iteration weights/ dir to reduce storage space

            # Plot tune results
            plot_tune_results(self.tune_csv)

            # Save and print tune results
            header = (
                f'{self.prefix}{i + 1}/{iterations} iterations complete ✅ ({time.time() - t0:.2f}s)\n'
                f'{self.prefix}Results saved to {colorstr("bold", self.tune_dir)}\n'
                f'{self.prefix}Best fitness={fitness[best_idx]} observed at iteration {best_idx + 1}\n'
                f'{self.prefix}Best fitness metrics are {best_metrics}\n'
                f'{self.prefix}Best fitness model is {best_save_dir}\n'
                f'{self.prefix}Best fitness hyperparameters are printed below.\n'
            )
            LOGGER.info("\n" + header)
            data = {k: float(x[best_idx, i + 1]) for i, k in enumerate(self.space.keys())}
            yaml_save(
                self.tune_dir / "best_hyperparameters.yaml",
                data=data,
                header=remove_colorstr(header.replace(self.prefix, "# ")) + "\n",
            )
            yaml_print(self.tune_dir / "best_hyperparameters.yaml")