File size: 58,879 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""

Export a YOLO PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.



Format                  | `format=argument`         | Model

---                     | ---                       | ---

PyTorch                 | -                         | yolo11n.pt

TorchScript             | `torchscript`             | yolo11n.torchscript

ONNX                    | `onnx`                    | yolo11n.onnx

OpenVINO                | `openvino`                | yolo11n_openvino_model/

TensorRT                | `engine`                  | yolo11n.engine

CoreML                  | `coreml`                  | yolo11n.mlpackage

TensorFlow SavedModel   | `saved_model`             | yolo11n_saved_model/

TensorFlow GraphDef     | `pb`                      | yolo11n.pb

TensorFlow Lite         | `tflite`                  | yolo11n.tflite

TensorFlow Edge TPU     | `edgetpu`                 | yolo11n_edgetpu.tflite

TensorFlow.js           | `tfjs`                    | yolo11n_web_model/

PaddlePaddle            | `paddle`                  | yolo11n_paddle_model/

NCNN                    | `ncnn`                    | yolo11n_ncnn_model/



Requirements:

    $ pip install "ultralytics[export]"



Python:

    from ultralytics import YOLO

    model = YOLO('yolo11n.pt')

    results = model.export(format='onnx')



CLI:

    $ yolo mode=export model=yolo11n.pt format=onnx



Inference:

    $ yolo predict model=yolo11n.pt                 # PyTorch

                         yolo11n.torchscript        # TorchScript

                         yolo11n.onnx               # ONNX Runtime or OpenCV DNN with dnn=True

                         yolo11n_openvino_model     # OpenVINO

                         yolo11n.engine             # TensorRT

                         yolo11n.mlpackage          # CoreML (macOS-only)

                         yolo11n_saved_model        # TensorFlow SavedModel

                         yolo11n.pb                 # TensorFlow GraphDef

                         yolo11n.tflite             # TensorFlow Lite

                         yolo11n_edgetpu.tflite     # TensorFlow Edge TPU

                         yolo11n_paddle_model       # PaddlePaddle

                         yolo11n_ncnn_model         # NCNN



TensorFlow.js:

    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example

    $ npm install

    $ ln -s ../../yolo11n_web_model public/yolo11n_web_model

    $ npm start

"""

import gc
import json
import os
import shutil
import subprocess
import time
import warnings
from copy import deepcopy
from datetime import datetime
from pathlib import Path

import numpy as np
import torch

from ultralytics.cfg import TASK2DATA, get_cfg
from ultralytics.data import build_dataloader
from ultralytics.data.dataset import YOLODataset
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.nn.autobackend import check_class_names, default_class_names
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel
from ultralytics.utils import (
    ARM64,
    DEFAULT_CFG,
    IS_JETSON,
    LINUX,
    LOGGER,
    MACOS,
    PYTHON_VERSION,
    ROOT,
    WINDOWS,
    __version__,
    callbacks,
    colorstr,
    get_default_args,
    yaml_save,
)
from ultralytics.utils.checks import check_imgsz, check_is_path_safe, check_requirements, check_version
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
from ultralytics.utils.files import file_size, spaces_in_path
from ultralytics.utils.ops import Profile
from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device, smart_inference_mode


def export_formats():
    """Ultralytics YOLO export formats."""
    x = [
        ["PyTorch", "-", ".pt", True, True],
        ["TorchScript", "torchscript", ".torchscript", True, True],
        ["ONNX", "onnx", ".onnx", True, True],
        ["OpenVINO", "openvino", "_openvino_model", True, False],
        ["TensorRT", "engine", ".engine", False, True],
        ["CoreML", "coreml", ".mlpackage", True, False],
        ["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
        ["TensorFlow GraphDef", "pb", ".pb", True, True],
        ["TensorFlow Lite", "tflite", ".tflite", True, False],
        ["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False],
        ["TensorFlow.js", "tfjs", "_web_model", True, False],
        ["PaddlePaddle", "paddle", "_paddle_model", True, True],
        ["NCNN", "ncnn", "_ncnn_model", True, True],
    ]
    return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU"], zip(*x)))


def gd_outputs(gd):
    """TensorFlow GraphDef model output node names."""
    name_list, input_list = [], []
    for node in gd.node:  # tensorflow.core.framework.node_def_pb2.NodeDef
        name_list.append(node.name)
        input_list.extend(node.input)
    return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))


def try_export(inner_func):
    """YOLO export decorator, i.e. @try_export."""
    inner_args = get_default_args(inner_func)

    def outer_func(*args, **kwargs):
        """Export a model."""
        prefix = inner_args["prefix"]
        try:
            with Profile() as dt:
                f, model = inner_func(*args, **kwargs)
            LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as '{f}' ({file_size(f):.1f} MB)")
            return f, model
        except Exception as e:
            LOGGER.error(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
            raise e

    return outer_func


class Exporter:
    """

    A class for exporting a model.



    Attributes:

        args (SimpleNamespace): Configuration for the exporter.

        callbacks (list, optional): List of callback functions. Defaults to None.

    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """

        Initializes the Exporter class.



        Args:

            cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.

            overrides (dict, optional): Configuration overrides. Defaults to None.

            _callbacks (dict, optional): Dictionary of callback functions. Defaults to None.

        """
        self.args = get_cfg(cfg, overrides)
        if self.args.format.lower() in {"coreml", "mlmodel"}:  # fix attempt for protobuf<3.20.x errors
            os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"  # must run before TensorBoard callback

        self.callbacks = _callbacks or callbacks.get_default_callbacks()
        callbacks.add_integration_callbacks(self)

    @smart_inference_mode()
    def __call__(self, model=None) -> str:
        """Returns list of exported files/dirs after running callbacks."""
        self.run_callbacks("on_export_start")
        t = time.time()
        fmt = self.args.format.lower()  # to lowercase
        if fmt in {"tensorrt", "trt"}:  # 'engine' aliases
            fmt = "engine"
        if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}:  # 'coreml' aliases
            fmt = "coreml"
        fmts = tuple(export_formats()["Argument"][1:])  # available export formats
        if fmt not in fmts:
            import difflib

            # Get the closest match if format is invalid
            matches = difflib.get_close_matches(fmt, fmts, n=1, cutoff=0.6)  # 60% similarity required to match
            if not matches:
                raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
            LOGGER.warning(f"WARNING ⚠️ Invalid export format='{fmt}', updating to format='{matches[0]}'")
            fmt = matches[0]
        flags = [x == fmt for x in fmts]
        if sum(flags) != 1:
            raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
        jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags  # export booleans
        is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))

        # Device
        if fmt == "engine" and self.args.device is None:
            LOGGER.warning("WARNING ⚠️ TensorRT requires GPU export, automatically assigning device=0")
            self.args.device = "0"
        self.device = select_device("cpu" if self.args.device is None else self.args.device)

        # Checks
        if not hasattr(model, "names"):
            model.names = default_class_names()
        model.names = check_class_names(model.names)
        if self.args.half and self.args.int8:
            LOGGER.warning("WARNING ⚠️ half=True and int8=True are mutually exclusive, setting half=False.")
            self.args.half = False
        if self.args.half and onnx and self.device.type == "cpu":
            LOGGER.warning("WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0")
            self.args.half = False
            assert not self.args.dynamic, "half=True not compatible with dynamic=True, i.e. use only one."
        self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2)  # check image size
        if self.args.int8 and engine:
            self.args.dynamic = True  # enforce dynamic to export TensorRT INT8
        if self.args.optimize:
            assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
            assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
        if edgetpu:
            if not LINUX:
                raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler")
            elif self.args.batch != 1:  # see github.com/ultralytics/ultralytics/pull/13420
                LOGGER.warning("WARNING ⚠️ Edge TPU export requires batch size 1, setting batch=1.")
                self.args.batch = 1
        if isinstance(model, WorldModel):
            LOGGER.warning(
                "WARNING ⚠️ YOLOWorld (original version) export is not supported to any format.\n"
                "WARNING ⚠️ YOLOWorldv2 models (i.e. 'yolov8s-worldv2.pt') only support export to "
                "(torchscript, onnx, openvino, engine, coreml) formats. "
                "See https://docs.ultralytics.com/models/yolo-world for details."
            )
        if self.args.int8 and not self.args.data:
            self.args.data = DEFAULT_CFG.data or TASK2DATA[getattr(model, "task", "detect")]  # assign default data
            LOGGER.warning(
                "WARNING ⚠️ INT8 export requires a missing 'data' arg for calibration. "
                f"Using default 'data={self.args.data}'."
            )
        # Input
        im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
        file = Path(
            getattr(model, "pt_path", None) or getattr(model, "yaml_file", None) or model.yaml.get("yaml_file", "")
        )
        if file.suffix in {".yaml", ".yml"}:
            file = Path(file.name)

        # Update model
        model = deepcopy(model).to(self.device)
        for p in model.parameters():
            p.requires_grad = False
        model.eval()
        model.float()
        model = model.fuse()
        for m in model.modules():
            if isinstance(m, (Detect, RTDETRDecoder)):  # includes all Detect subclasses like Segment, Pose, OBB
                m.dynamic = self.args.dynamic
                m.export = True
                m.format = self.args.format
                m.max_det = self.args.max_det
            elif isinstance(m, C2f) and not is_tf_format:
                # EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
                m.forward = m.forward_split

        y = None
        for _ in range(2):
            y = model(im)  # dry runs
        if self.args.half and onnx and self.device.type != "cpu":
            im, model = im.half(), model.half()  # to FP16

        # Filter warnings
        warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)  # suppress TracerWarning
        warnings.filterwarnings("ignore", category=UserWarning)  # suppress shape prim::Constant missing ONNX warning
        warnings.filterwarnings("ignore", category=DeprecationWarning)  # suppress CoreML np.bool deprecation warning

        # Assign
        self.im = im
        self.model = model
        self.file = file
        self.output_shape = (
            tuple(y.shape)
            if isinstance(y, torch.Tensor)
            else tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y)
        )
        self.pretty_name = Path(self.model.yaml.get("yaml_file", self.file)).stem.replace("yolo", "YOLO")
        data = model.args["data"] if hasattr(model, "args") and isinstance(model.args, dict) else ""
        description = f'Ultralytics {self.pretty_name} model {f"trained on {data}" if data else ""}'
        self.metadata = {
            "description": description,
            "author": "Ultralytics",
            "date": datetime.now().isoformat(),
            "version": __version__,
            "license": "AGPL-3.0 License (https://ultralytics.com/license)",
            "docs": "https://docs.ultralytics.com",
            "stride": int(max(model.stride)),
            "task": model.task,
            "batch": self.args.batch,
            "imgsz": self.imgsz,
            "names": model.names,
        }  # model metadata
        if model.task == "pose":
            self.metadata["kpt_shape"] = model.model[-1].kpt_shape

        LOGGER.info(
            f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and "
            f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)'
        )

        # Exports
        f = [""] * len(fmts)  # exported filenames
        if jit or ncnn:  # TorchScript
            f[0], _ = self.export_torchscript()
        if engine:  # TensorRT required before ONNX
            f[1], _ = self.export_engine()
        if onnx:  # ONNX
            f[2], _ = self.export_onnx()
        if xml:  # OpenVINO
            f[3], _ = self.export_openvino()
        if coreml:  # CoreML
            f[4], _ = self.export_coreml()
        if is_tf_format:  # TensorFlow formats
            self.args.int8 |= edgetpu
            f[5], keras_model = self.export_saved_model()
            if pb or tfjs:  # pb prerequisite to tfjs
                f[6], _ = self.export_pb(keras_model=keras_model)
            if tflite:
                f[7], _ = self.export_tflite(keras_model=keras_model, nms=False, agnostic_nms=self.args.agnostic_nms)
            if edgetpu:
                f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f"{self.file.stem}_full_integer_quant.tflite")
            if tfjs:
                f[9], _ = self.export_tfjs()
        if paddle:  # PaddlePaddle
            f[10], _ = self.export_paddle()
        if ncnn:  # NCNN
            f[11], _ = self.export_ncnn()

        # Finish
        f = [str(x) for x in f if x]  # filter out '' and None
        if any(f):
            f = str(Path(f[-1]))
            square = self.imgsz[0] == self.imgsz[1]
            s = (
                ""
                if square
                else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not "
                f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
            )
            imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(" ", "")
            predict_data = f"data={data}" if model.task == "segment" and fmt == "pb" else ""
            q = "int8" if self.args.int8 else "half" if self.args.half else ""  # quantization
            LOGGER.info(
                f'\nExport complete ({time.time() - t:.1f}s)'
                f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
                f'\nPredict:         yolo predict task={model.task} model={f} imgsz={imgsz} {q} {predict_data}'
                f'\nValidate:        yolo val task={model.task} model={f} imgsz={imgsz} data={data} {q} {s}'
                f'\nVisualize:       https://netron.app'
            )

        self.run_callbacks("on_export_end")
        return f  # return list of exported files/dirs

    def get_int8_calibration_dataloader(self, prefix=""):
        """Build and return a dataloader suitable for calibration of INT8 models."""
        LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
        data = (check_cls_dataset if self.model.task == "classify" else check_det_dataset)(self.args.data)
        # TensorRT INT8 calibration should use 2x batch size
        batch = self.args.batch * (2 if self.args.format == "engine" else 1)
        dataset = YOLODataset(
            data[self.args.split or "val"],
            data=data,
            task=self.model.task,
            imgsz=self.imgsz[0],
            augment=False,
            batch_size=batch,
        )
        n = len(dataset)
        if n < 300:
            LOGGER.warning(f"{prefix} WARNING ⚠️ >300 images recommended for INT8 calibration, found {n} images.")
        return build_dataloader(dataset, batch=batch, workers=0)  # required for batch loading

    @try_export
    def export_torchscript(self, prefix=colorstr("TorchScript:")):
        """YOLO TorchScript model export."""
        LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
        f = self.file.with_suffix(".torchscript")

        ts = torch.jit.trace(self.model, self.im, strict=False)
        extra_files = {"config.txt": json.dumps(self.metadata)}  # torch._C.ExtraFilesMap()
        if self.args.optimize:  # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
            LOGGER.info(f"{prefix} optimizing for mobile...")
            from torch.utils.mobile_optimizer import optimize_for_mobile

            optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
        else:
            ts.save(str(f), _extra_files=extra_files)
        return f, None

    @try_export
    def export_onnx(self, prefix=colorstr("ONNX:")):
        """YOLO ONNX export."""
        requirements = ["onnx>=1.12.0"]
        if self.args.simplify:
            requirements += ["onnxslim==0.1.34", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
        check_requirements(requirements)
        import onnx  # noqa

        opset_version = self.args.opset or get_latest_opset()
        LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...")
        f = str(self.file.with_suffix(".onnx"))

        output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
        dynamic = self.args.dynamic
        if dynamic:
            dynamic = {"images": {0: "batch", 2: "height", 3: "width"}}  # shape(1,3,640,640)
            if isinstance(self.model, SegmentationModel):
                dynamic["output0"] = {0: "batch", 2: "anchors"}  # shape(1, 116, 8400)
                dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"}  # shape(1,32,160,160)
            elif isinstance(self.model, DetectionModel):
                dynamic["output0"] = {0: "batch", 2: "anchors"}  # shape(1, 84, 8400)

        torch.onnx.export(
            self.model.cpu() if dynamic else self.model,  # dynamic=True only compatible with cpu
            self.im.cpu() if dynamic else self.im,
            f,
            verbose=False,
            opset_version=opset_version,
            do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
            input_names=["images"],
            output_names=output_names,
            dynamic_axes=dynamic or None,
        )

        # Checks
        model_onnx = onnx.load(f)  # load onnx model

        # Simplify
        if self.args.simplify:
            try:
                import onnxslim

                LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...")
                model_onnx = onnxslim.slim(model_onnx)

            except Exception as e:
                LOGGER.warning(f"{prefix} simplifier failure: {e}")

        # Metadata
        for k, v in self.metadata.items():
            meta = model_onnx.metadata_props.add()
            meta.key, meta.value = k, str(v)

        onnx.save(model_onnx, f)
        return f, model_onnx

    @try_export
    def export_openvino(self, prefix=colorstr("OpenVINO:")):
        """YOLO OpenVINO export."""
        check_requirements(f'openvino{"<=2024.0.0" if ARM64 else ">=2024.0.0"}')  # fix OpenVINO issue on ARM64
        import openvino as ov

        LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
        assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={torch.__version__} is installed"
        ov_model = ov.convert_model(
            self.model,
            input=None if self.args.dynamic else [self.im.shape],
            example_input=self.im,
        )

        def serialize(ov_model, file):
            """Set RT info, serialize and save metadata YAML."""
            ov_model.set_rt_info("YOLO", ["model_info", "model_type"])
            ov_model.set_rt_info(True, ["model_info", "reverse_input_channels"])
            ov_model.set_rt_info(114, ["model_info", "pad_value"])
            ov_model.set_rt_info([255.0], ["model_info", "scale_values"])
            ov_model.set_rt_info(self.args.iou, ["model_info", "iou_threshold"])
            ov_model.set_rt_info([v.replace(" ", "_") for v in self.model.names.values()], ["model_info", "labels"])
            if self.model.task != "classify":
                ov_model.set_rt_info("fit_to_window_letterbox", ["model_info", "resize_type"])

            ov.runtime.save_model(ov_model, file, compress_to_fp16=self.args.half)
            yaml_save(Path(file).parent / "metadata.yaml", self.metadata)  # add metadata.yaml

        if self.args.int8:
            fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}")
            fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name)
            check_requirements("nncf>=2.8.0")
            import nncf

            def transform_fn(data_item) -> np.ndarray:
                """Quantization transform function."""
                data_item: torch.Tensor = data_item["img"] if isinstance(data_item, dict) else data_item
                assert data_item.dtype == torch.uint8, "Input image must be uint8 for the quantization preprocessing"
                im = data_item.numpy().astype(np.float32) / 255.0  # uint8 to fp16/32 and 0 - 255 to 0.0 - 1.0
                return np.expand_dims(im, 0) if im.ndim == 3 else im

            # Generate calibration data for integer quantization
            ignored_scope = None
            if isinstance(self.model.model[-1], Detect):
                # Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
                head_module_name = ".".join(list(self.model.named_modules())[-1][0].split(".")[:2])
                ignored_scope = nncf.IgnoredScope(  # ignore operations
                    patterns=[
                        f".*{head_module_name}/.*/Add",
                        f".*{head_module_name}/.*/Sub*",
                        f".*{head_module_name}/.*/Mul*",
                        f".*{head_module_name}/.*/Div*",
                        f".*{head_module_name}\\.dfl.*",
                    ],
                    types=["Sigmoid"],
                )

            quantized_ov_model = nncf.quantize(
                model=ov_model,
                calibration_dataset=nncf.Dataset(self.get_int8_calibration_dataloader(prefix), transform_fn),
                preset=nncf.QuantizationPreset.MIXED,
                ignored_scope=ignored_scope,
            )
            serialize(quantized_ov_model, fq_ov)
            return fq, None

        f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}")
        f_ov = str(Path(f) / self.file.with_suffix(".xml").name)

        serialize(ov_model, f_ov)
        return f, None

    @try_export
    def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
        """YOLO Paddle export."""
        check_requirements(("paddlepaddle", "x2paddle"))
        import x2paddle  # noqa
        from x2paddle.convert import pytorch2paddle  # noqa

        LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
        f = str(self.file).replace(self.file.suffix, f"_paddle_model{os.sep}")

        pytorch2paddle(module=self.model, save_dir=f, jit_type="trace", input_examples=[self.im])  # export
        yaml_save(Path(f) / "metadata.yaml", self.metadata)  # add metadata.yaml
        return f, None

    @try_export
    def export_ncnn(self, prefix=colorstr("NCNN:")):
        """YOLO NCNN export using PNNX https://github.com/pnnx/pnnx."""
        check_requirements("ncnn")
        import ncnn  # noqa

        LOGGER.info(f"\n{prefix} starting export with NCNN {ncnn.__version__}...")
        f = Path(str(self.file).replace(self.file.suffix, f"_ncnn_model{os.sep}"))
        f_ts = self.file.with_suffix(".torchscript")

        name = Path("pnnx.exe" if WINDOWS else "pnnx")  # PNNX filename
        pnnx = name if name.is_file() else (ROOT / name)
        if not pnnx.is_file():
            LOGGER.warning(
                f"{prefix} WARNING ⚠️ PNNX not found. Attempting to download binary file from "
                "https://github.com/pnnx/pnnx/.\nNote PNNX Binary file must be placed in current working directory "
                f"or in {ROOT}. See PNNX repo for full installation instructions."
            )
            system = "macos" if MACOS else "windows" if WINDOWS else "linux-aarch64" if ARM64 else "linux"
            try:
                release, assets = get_github_assets(repo="pnnx/pnnx")
                asset = [x for x in assets if f"{system}.zip" in x][0]
                assert isinstance(asset, str), "Unable to retrieve PNNX repo assets"  # i.e. pnnx-20240410-macos.zip
                LOGGER.info(f"{prefix} successfully found latest PNNX asset file {asset}")
            except Exception as e:
                release = "20240410"
                asset = f"pnnx-{release}-{system}.zip"
                LOGGER.warning(f"{prefix} WARNING ⚠️ PNNX GitHub assets not found: {e}, using default {asset}")
            unzip_dir = safe_download(f"https://github.com/pnnx/pnnx/releases/download/{release}/{asset}", delete=True)
            if check_is_path_safe(Path.cwd(), unzip_dir):  # avoid path traversal security vulnerability
                shutil.move(src=unzip_dir / name, dst=pnnx)  # move binary to ROOT
                pnnx.chmod(0o777)  # set read, write, and execute permissions for everyone
                shutil.rmtree(unzip_dir)  # delete unzip dir

        ncnn_args = [
            f'ncnnparam={f / "model.ncnn.param"}',
            f'ncnnbin={f / "model.ncnn.bin"}',
            f'ncnnpy={f / "model_ncnn.py"}',
        ]

        pnnx_args = [
            f'pnnxparam={f / "model.pnnx.param"}',
            f'pnnxbin={f / "model.pnnx.bin"}',
            f'pnnxpy={f / "model_pnnx.py"}',
            f'pnnxonnx={f / "model.pnnx.onnx"}',
        ]

        cmd = [
            str(pnnx),
            str(f_ts),
            *ncnn_args,
            *pnnx_args,
            f"fp16={int(self.args.half)}",
            f"device={self.device.type}",
            f'inputshape="{[self.args.batch, 3, *self.imgsz]}"',
        ]
        f.mkdir(exist_ok=True)  # make ncnn_model directory
        LOGGER.info(f"{prefix} running '{' '.join(cmd)}'")
        subprocess.run(cmd, check=True)

        # Remove debug files
        pnnx_files = [x.split("=")[-1] for x in pnnx_args]
        for f_debug in ("debug.bin", "debug.param", "debug2.bin", "debug2.param", *pnnx_files):
            Path(f_debug).unlink(missing_ok=True)

        yaml_save(f / "metadata.yaml", self.metadata)  # add metadata.yaml
        return str(f), None

    @try_export
    def export_coreml(self, prefix=colorstr("CoreML:")):
        """YOLO CoreML export."""
        mlmodel = self.args.format.lower() == "mlmodel"  # legacy *.mlmodel export format requested
        check_requirements("coremltools>=6.0,<=6.2" if mlmodel else "coremltools>=7.0")
        import coremltools as ct  # noqa

        LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
        assert not WINDOWS, "CoreML export is not supported on Windows, please run on macOS or Linux."
        assert self.args.batch == 1, "CoreML batch sizes > 1 are not supported. Please retry at 'batch=1'."
        f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage")
        if f.is_dir():
            shutil.rmtree(f)
        if self.args.nms and getattr(self.model, "end2end", False):
            LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is not available for end2end models. Forcing 'nms=False'.")
            self.args.nms = False

        bias = [0.0, 0.0, 0.0]
        scale = 1 / 255
        classifier_config = None
        if self.model.task == "classify":
            classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None
            model = self.model
        elif self.model.task == "detect":
            model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model
        else:
            if self.args.nms:
                LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolov8n.pt'.")
                # TODO CoreML Segment and Pose model pipelining
            model = self.model

        ts = torch.jit.trace(model.eval(), self.im, strict=False)  # TorchScript model
        ct_model = ct.convert(
            ts,
            inputs=[ct.ImageType("image", shape=self.im.shape, scale=scale, bias=bias)],
            classifier_config=classifier_config,
            convert_to="neuralnetwork" if mlmodel else "mlprogram",
        )
        bits, mode = (8, "kmeans") if self.args.int8 else (16, "linear") if self.args.half else (32, None)
        if bits < 32:
            if "kmeans" in mode:
                check_requirements("scikit-learn")  # scikit-learn package required for k-means quantization
            if mlmodel:
                ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
            elif bits == 8:  # mlprogram already quantized to FP16
                import coremltools.optimize.coreml as cto

                op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512)
                config = cto.OptimizationConfig(global_config=op_config)
                ct_model = cto.palettize_weights(ct_model, config=config)
        if self.args.nms and self.model.task == "detect":
            if mlmodel:
                # coremltools<=6.2 NMS export requires Python<3.11
                check_version(PYTHON_VERSION, "<3.11", name="Python ", hard=True)
                weights_dir = None
            else:
                ct_model.save(str(f))  # save otherwise weights_dir does not exist
                weights_dir = str(f / "Data/com.apple.CoreML/weights")
            ct_model = self._pipeline_coreml(ct_model, weights_dir=weights_dir)

        m = self.metadata  # metadata dict
        ct_model.short_description = m.pop("description")
        ct_model.author = m.pop("author")
        ct_model.license = m.pop("license")
        ct_model.version = m.pop("version")
        ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()})
        try:
            ct_model.save(str(f))  # save *.mlpackage
        except Exception as e:
            LOGGER.warning(
                f"{prefix} WARNING ⚠️ CoreML export to *.mlpackage failed ({e}), reverting to *.mlmodel export. "
                f"Known coremltools Python 3.11 and Windows bugs https://github.com/apple/coremltools/issues/1928."
            )
            f = f.with_suffix(".mlmodel")
            ct_model.save(str(f))
        return f, ct_model

    @try_export
    def export_engine(self, prefix=colorstr("TensorRT:")):
        """YOLO TensorRT export https://developer.nvidia.com/tensorrt."""
        assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
        f_onnx, _ = self.export_onnx()  # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016

        try:
            import tensorrt as trt  # noqa
        except ImportError:
            if LINUX:
                check_requirements("tensorrt>7.0.0,<=10.1.0")
            import tensorrt as trt  # noqa
        check_version(trt.__version__, ">=7.0.0", hard=True)
        check_version(trt.__version__, "<=10.1.0", msg="https://github.com/ultralytics/ultralytics/pull/14239")

        # Setup and checks
        LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
        is_trt10 = int(trt.__version__.split(".")[0]) >= 10  # is TensorRT >= 10
        assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
        f = self.file.with_suffix(".engine")  # TensorRT engine file
        logger = trt.Logger(trt.Logger.INFO)
        if self.args.verbose:
            logger.min_severity = trt.Logger.Severity.VERBOSE

        # Engine builder
        builder = trt.Builder(logger)
        config = builder.create_builder_config()
        workspace = int(self.args.workspace * (1 << 30))
        if is_trt10:
            config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
        else:  # TensorRT versions 7, 8
            config.max_workspace_size = workspace
        flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
        network = builder.create_network(flag)
        half = builder.platform_has_fast_fp16 and self.args.half
        int8 = builder.platform_has_fast_int8 and self.args.int8
        # Read ONNX file
        parser = trt.OnnxParser(network, logger)
        if not parser.parse_from_file(f_onnx):
            raise RuntimeError(f"failed to load ONNX file: {f_onnx}")

        # Network inputs
        inputs = [network.get_input(i) for i in range(network.num_inputs)]
        outputs = [network.get_output(i) for i in range(network.num_outputs)]
        for inp in inputs:
            LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
        for out in outputs:
            LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')

        if self.args.dynamic:
            shape = self.im.shape
            if shape[0] <= 1:
                LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
            profile = builder.create_optimization_profile()
            min_shape = (1, shape[1], 32, 32)  # minimum input shape
            max_shape = (*shape[:2], *(max(1, self.args.workspace) * d for d in shape[2:]))  # max input shape
            for inp in inputs:
                profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
            config.add_optimization_profile(profile)

        LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {f}")
        if int8:
            config.set_flag(trt.BuilderFlag.INT8)
            config.set_calibration_profile(profile)
            config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED

            class EngineCalibrator(trt.IInt8Calibrator):
                def __init__(

                    self,

                    dataset,  # ultralytics.data.build.InfiniteDataLoader

                    batch: int,

                    cache: str = "",

                ) -> None:
                    trt.IInt8Calibrator.__init__(self)
                    self.dataset = dataset
                    self.data_iter = iter(dataset)
                    self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
                    self.batch = batch
                    self.cache = Path(cache)

                def get_algorithm(self) -> trt.CalibrationAlgoType:
                    """Get the calibration algorithm to use."""
                    return self.algo

                def get_batch_size(self) -> int:
                    """Get the batch size to use for calibration."""
                    return self.batch or 1

                def get_batch(self, names) -> list:
                    """Get the next batch to use for calibration, as a list of device memory pointers."""
                    try:
                        im0s = next(self.data_iter)["img"] / 255.0
                        im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
                        return [int(im0s.data_ptr())]
                    except StopIteration:
                        # Return [] or None, signal to TensorRT there is no calibration data remaining
                        return None

                def read_calibration_cache(self) -> bytes:
                    """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
                    if self.cache.exists() and self.cache.suffix == ".cache":
                        return self.cache.read_bytes()

                def write_calibration_cache(self, cache) -> None:
                    """Write calibration cache to disk."""
                    _ = self.cache.write_bytes(cache)

            # Load dataset w/ builder (for batching) and calibrate
            config.int8_calibrator = EngineCalibrator(
                dataset=self.get_int8_calibration_dataloader(prefix),
                batch=2 * self.args.batch,  # TensorRT INT8 calibration should use 2x batch size
                cache=str(self.file.with_suffix(".cache")),
            )

        elif half:
            config.set_flag(trt.BuilderFlag.FP16)

        # Free CUDA memory
        del self.model
        gc.collect()
        torch.cuda.empty_cache()

        # Write file
        build = builder.build_serialized_network if is_trt10 else builder.build_engine
        with build(network, config) as engine, open(f, "wb") as t:
            # Metadata
            meta = json.dumps(self.metadata)
            t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
            t.write(meta.encode())
            # Model
            t.write(engine if is_trt10 else engine.serialize())

        return f, None

    @try_export
    def export_saved_model(self, prefix=colorstr("TensorFlow SavedModel:")):
        """YOLO TensorFlow SavedModel export."""
        cuda = torch.cuda.is_available()
        try:
            import tensorflow as tf  # noqa
        except ImportError:
            suffix = "-macos" if MACOS else "-aarch64" if ARM64 else "" if cuda else "-cpu"
            version = ">=2.0.0"
            check_requirements(f"tensorflow{suffix}{version}")
            import tensorflow as tf  # noqa
        check_requirements(
            (
                "keras",  # required by 'onnx2tf' package
                "tf_keras",  # required by 'onnx2tf' package
                "sng4onnx>=1.0.1",  # required by 'onnx2tf' package
                "onnx_graphsurgeon>=0.3.26",  # required by 'onnx2tf' package
                "onnx>=1.12.0",
                "onnx2tf>1.17.5,<=1.22.3",
                "onnxslim>=0.1.31",
                "tflite_support<=0.4.3" if IS_JETSON else "tflite_support",  # fix ImportError 'GLIBCXX_3.4.29'
                "flatbuffers>=23.5.26,<100",  # update old 'flatbuffers' included inside tensorflow package
                "onnxruntime-gpu" if cuda else "onnxruntime",
            ),
            cmds="--extra-index-url https://pypi.ngc.nvidia.com",  # onnx_graphsurgeon only on NVIDIA
        )

        LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
        check_version(
            tf.__version__,
            ">=2.0.0",
            name="tensorflow",
            verbose=True,
            msg="https://github.com/ultralytics/ultralytics/issues/5161",
        )
        import onnx2tf

        f = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
        if f.is_dir():
            shutil.rmtree(f)  # delete output folder

        # Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545
        onnx2tf_file = Path("calibration_image_sample_data_20x128x128x3_float32.npy")
        if not onnx2tf_file.exists():
            attempt_download_asset(f"{onnx2tf_file}.zip", unzip=True, delete=True)

        # Export to ONNX
        self.args.simplify = True
        f_onnx, _ = self.export_onnx()

        # Export to TF
        np_data = None
        if self.args.int8:
            tmp_file = f / "tmp_tflite_int8_calibration_images.npy"  # int8 calibration images file
            if self.args.data:
                f.mkdir()
                images = [batch["img"].permute(0, 2, 3, 1) for batch in self.get_int8_calibration_dataloader(prefix)]
                images = torch.cat(images, 0).float()
                np.save(str(tmp_file), images.numpy().astype(np.float32))  # BHWC
                np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]

        LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...")
        keras_model = onnx2tf.convert(
            input_onnx_file_path=f_onnx,
            output_folder_path=str(f),
            not_use_onnxsim=True,
            verbosity="error",  # note INT8-FP16 activation bug https://github.com/ultralytics/ultralytics/issues/15873
            output_integer_quantized_tflite=self.args.int8,
            quant_type="per-tensor",  # "per-tensor" (faster) or "per-channel" (slower but more accurate)
            custom_input_op_name_np_data_path=np_data,
            disable_group_convolution=True,  # for end-to-end model compatibility
            enable_batchmatmul_unfold=True,  # for end-to-end model compatibility
        )
        yaml_save(f / "metadata.yaml", self.metadata)  # add metadata.yaml

        # Remove/rename TFLite models
        if self.args.int8:
            tmp_file.unlink(missing_ok=True)
            for file in f.rglob("*_dynamic_range_quant.tflite"):
                file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix))
            for file in f.rglob("*_integer_quant_with_int16_act.tflite"):
                file.unlink()  # delete extra fp16 activation TFLite files

        # Add TFLite metadata
        for file in f.rglob("*.tflite"):
            f.unlink() if "quant_with_int16_act.tflite" in str(f) else self._add_tflite_metadata(file)

        return str(f), keras_model  # or keras_model = tf.saved_model.load(f, tags=None, options=None)

    @try_export
    def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")):
        """YOLO TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow."""
        import tensorflow as tf  # noqa
        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2  # noqa

        LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
        f = self.file.with_suffix(".pb")

        m = tf.function(lambda x: keras_model(x))  # full model
        m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
        frozen_func = convert_variables_to_constants_v2(m)
        frozen_func.graph.as_graph_def()
        tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
        return f, None

    @try_export
    def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")):
        """YOLO TensorFlow Lite export."""
        # BUG https://github.com/ultralytics/ultralytics/issues/13436
        import tensorflow as tf  # noqa

        LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
        saved_model = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
        if self.args.int8:
            f = saved_model / f"{self.file.stem}_int8.tflite"  # fp32 in/out
        elif self.args.half:
            f = saved_model / f"{self.file.stem}_float16.tflite"  # fp32 in/out
        else:
            f = saved_model / f"{self.file.stem}_float32.tflite"
        return str(f), None

    @try_export
    def export_edgetpu(self, tflite_model="", prefix=colorstr("Edge TPU:")):
        """YOLO Edge TPU export https://coral.ai/docs/edgetpu/models-intro/."""
        LOGGER.warning(f"{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185")

        cmd = "edgetpu_compiler --version"
        help_url = "https://coral.ai/docs/edgetpu/compiler/"
        assert LINUX, f"export only supported on Linux. See {help_url}"
        if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
            LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
            sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0  # sudo installed on system
            for c in (
                "curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
                'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | '
                "sudo tee /etc/apt/sources.list.d/coral-edgetpu.list",
                "sudo apt-get update",
                "sudo apt-get install edgetpu-compiler",
            ):
                subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
        ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]

        LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
        f = str(tflite_model).replace(".tflite", "_edgetpu.tflite")  # Edge TPU model

        cmd = (
            "edgetpu_compiler "
            f'--out_dir "{Path(f).parent}" '
            "--show_operations "
            "--search_delegate "
            "--delegate_search_step 3 "
            "--timeout_sec 180 "
            f'"{tflite_model}"'
        )
        LOGGER.info(f"{prefix} running '{cmd}'")
        subprocess.run(cmd, shell=True)
        self._add_tflite_metadata(f)
        return f, None

    @try_export
    def export_tfjs(self, prefix=colorstr("TensorFlow.js:")):
        """YOLO TensorFlow.js export."""
        check_requirements("tensorflowjs")
        if ARM64:
            # Fix error: `np.object` was a deprecated alias for the builtin `object` when exporting to TF.js on ARM64
            check_requirements("numpy==1.23.5")
        import tensorflow as tf
        import tensorflowjs as tfjs  # noqa

        LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
        f = str(self.file).replace(self.file.suffix, "_web_model")  # js dir
        f_pb = str(self.file.with_suffix(".pb"))  # *.pb path

        gd = tf.Graph().as_graph_def()  # TF GraphDef
        with open(f_pb, "rb") as file:
            gd.ParseFromString(file.read())
        outputs = ",".join(gd_outputs(gd))
        LOGGER.info(f"\n{prefix} output node names: {outputs}")

        quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else ""
        with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_:  # exporter can not handle spaces in path
            cmd = (
                "tensorflowjs_converter "
                f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"'
            )
            LOGGER.info(f"{prefix} running '{cmd}'")
            subprocess.run(cmd, shell=True)

        if " " in f:
            LOGGER.warning(f"{prefix} WARNING ⚠️ your model may not work correctly with spaces in path '{f}'.")

        # Add metadata
        yaml_save(Path(f) / "metadata.yaml", self.metadata)  # add metadata.yaml
        return f, None

    def _add_tflite_metadata(self, file):
        """Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata."""
        import flatbuffers

        try:
            # TFLite Support bug https://github.com/tensorflow/tflite-support/issues/954#issuecomment-2108570845
            from tensorflow_lite_support.metadata import metadata_schema_py_generated as schema  # noqa
            from tensorflow_lite_support.metadata.python import metadata  # noqa
        except ImportError:  # ARM64 systems may not have the 'tensorflow_lite_support' package available
            from tflite_support import metadata  # noqa
            from tflite_support import metadata_schema_py_generated as schema  # noqa

        # Create model info
        model_meta = schema.ModelMetadataT()
        model_meta.name = self.metadata["description"]
        model_meta.version = self.metadata["version"]
        model_meta.author = self.metadata["author"]
        model_meta.license = self.metadata["license"]

        # Label file
        tmp_file = Path(file).parent / "temp_meta.txt"
        with open(tmp_file, "w") as f:
            f.write(str(self.metadata))

        label_file = schema.AssociatedFileT()
        label_file.name = tmp_file.name
        label_file.type = schema.AssociatedFileType.TENSOR_AXIS_LABELS

        # Create input info
        input_meta = schema.TensorMetadataT()
        input_meta.name = "image"
        input_meta.description = "Input image to be detected."
        input_meta.content = schema.ContentT()
        input_meta.content.contentProperties = schema.ImagePropertiesT()
        input_meta.content.contentProperties.colorSpace = schema.ColorSpaceType.RGB
        input_meta.content.contentPropertiesType = schema.ContentProperties.ImageProperties

        # Create output info
        output1 = schema.TensorMetadataT()
        output1.name = "output"
        output1.description = "Coordinates of detected objects, class labels, and confidence score"
        output1.associatedFiles = [label_file]
        if self.model.task == "segment":
            output2 = schema.TensorMetadataT()
            output2.name = "output"
            output2.description = "Mask protos"
            output2.associatedFiles = [label_file]

        # Create subgraph info
        subgraph = schema.SubGraphMetadataT()
        subgraph.inputTensorMetadata = [input_meta]
        subgraph.outputTensorMetadata = [output1, output2] if self.model.task == "segment" else [output1]
        model_meta.subgraphMetadata = [subgraph]

        b = flatbuffers.Builder(0)
        b.Finish(model_meta.Pack(b), metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
        metadata_buf = b.Output()

        populator = metadata.MetadataPopulator.with_model_file(str(file))
        populator.load_metadata_buffer(metadata_buf)
        populator.load_associated_files([str(tmp_file)])
        populator.populate()
        tmp_file.unlink()

    def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")):
        """YOLO CoreML pipeline."""
        import coremltools as ct  # noqa

        LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
        _, _, h, w = list(self.im.shape)  # BCHW

        # Output shapes
        spec = model.get_spec()
        out0, out1 = iter(spec.description.output)
        if MACOS:
            from PIL import Image

            img = Image.new("RGB", (w, h))  # w=192, h=320
            out = model.predict({"image": img})
            out0_shape = out[out0.name].shape  # (3780, 80)
            out1_shape = out[out1.name].shape  # (3780, 4)
        else:  # linux and windows can not run model.predict(), get sizes from PyTorch model output y
            out0_shape = self.output_shape[2], self.output_shape[1] - 4  # (3780, 80)
            out1_shape = self.output_shape[2], 4  # (3780, 4)

        # Checks
        names = self.metadata["names"]
        nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
        _, nc = out0_shape  # number of anchors, number of classes
        assert len(names) == nc, f"{len(names)} names found for nc={nc}"  # check

        # Define output shapes (missing)
        out0.type.multiArrayType.shape[:] = out0_shape  # (3780, 80)
        out1.type.multiArrayType.shape[:] = out1_shape  # (3780, 4)

        # Model from spec
        model = ct.models.MLModel(spec, weights_dir=weights_dir)

        # 3. Create NMS protobuf
        nms_spec = ct.proto.Model_pb2.Model()
        nms_spec.specificationVersion = 5
        for i in range(2):
            decoder_output = model._spec.description.output[i].SerializeToString()
            nms_spec.description.input.add()
            nms_spec.description.input[i].ParseFromString(decoder_output)
            nms_spec.description.output.add()
            nms_spec.description.output[i].ParseFromString(decoder_output)

        nms_spec.description.output[0].name = "confidence"
        nms_spec.description.output[1].name = "coordinates"

        output_sizes = [nc, 4]
        for i in range(2):
            ma_type = nms_spec.description.output[i].type.multiArrayType
            ma_type.shapeRange.sizeRanges.add()
            ma_type.shapeRange.sizeRanges[0].lowerBound = 0
            ma_type.shapeRange.sizeRanges[0].upperBound = -1
            ma_type.shapeRange.sizeRanges.add()
            ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
            ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
            del ma_type.shape[:]

        nms = nms_spec.nonMaximumSuppression
        nms.confidenceInputFeatureName = out0.name  # 1x507x80
        nms.coordinatesInputFeatureName = out1.name  # 1x507x4
        nms.confidenceOutputFeatureName = "confidence"
        nms.coordinatesOutputFeatureName = "coordinates"
        nms.iouThresholdInputFeatureName = "iouThreshold"
        nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
        nms.iouThreshold = 0.45
        nms.confidenceThreshold = 0.25
        nms.pickTop.perClass = True
        nms.stringClassLabels.vector.extend(names.values())
        nms_model = ct.models.MLModel(nms_spec)

        # 4. Pipeline models together
        pipeline = ct.models.pipeline.Pipeline(
            input_features=[
                ("image", ct.models.datatypes.Array(3, ny, nx)),
                ("iouThreshold", ct.models.datatypes.Double()),
                ("confidenceThreshold", ct.models.datatypes.Double()),
            ],
            output_features=["confidence", "coordinates"],
        )
        pipeline.add_model(model)
        pipeline.add_model(nms_model)

        # Correct datatypes
        pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
        pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
        pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())

        # Update metadata
        pipeline.spec.specificationVersion = 5
        pipeline.spec.description.metadata.userDefined.update(
            {"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)}
        )

        # Save the model
        model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
        model.input_description["image"] = "Input image"
        model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})"
        model.input_description["confidenceThreshold"] = (
            f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})"
        )
        model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
        model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
        LOGGER.info(f"{prefix} pipeline success")
        return model

    def add_callback(self, event: str, callback):
        """Appends the given callback."""
        self.callbacks[event].append(callback)

    def run_callbacks(self, event: str):
        """Execute all callbacks for a given event."""
        for callback in self.callbacks.get(event, []):
            callback(self)


class IOSDetectModel(torch.nn.Module):
    """Wrap an Ultralytics YOLO model for Apple iOS CoreML export."""

    def __init__(self, model, im):
        """Initialize the IOSDetectModel class with a YOLO model and example image."""
        super().__init__()
        _, _, h, w = im.shape  # batch, channel, height, width
        self.model = model
        self.nc = len(model.names)  # number of classes
        if w == h:
            self.normalize = 1.0 / w  # scalar
        else:
            self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h])  # broadcast (slower, smaller)

    def forward(self, x):
        """Normalize predictions of object detection model with input size-dependent factors."""
        xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
        return cls, xywh * self.normalize  # confidence (3780, 80), coordinates (3780, 4)