File size: 58,879 Bytes
f6228f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Export a YOLO PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
Format | `format=argument` | Model
--- | --- | ---
PyTorch | - | yolo11n.pt
TorchScript | `torchscript` | yolo11n.torchscript
ONNX | `onnx` | yolo11n.onnx
OpenVINO | `openvino` | yolo11n_openvino_model/
TensorRT | `engine` | yolo11n.engine
CoreML | `coreml` | yolo11n.mlpackage
TensorFlow SavedModel | `saved_model` | yolo11n_saved_model/
TensorFlow GraphDef | `pb` | yolo11n.pb
TensorFlow Lite | `tflite` | yolo11n.tflite
TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolo11n_web_model/
PaddlePaddle | `paddle` | yolo11n_paddle_model/
NCNN | `ncnn` | yolo11n_ncnn_model/
Requirements:
$ pip install "ultralytics[export]"
Python:
from ultralytics import YOLO
model = YOLO('yolo11n.pt')
results = model.export(format='onnx')
CLI:
$ yolo mode=export model=yolo11n.pt format=onnx
Inference:
$ yolo predict model=yolo11n.pt # PyTorch
yolo11n.torchscript # TorchScript
yolo11n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolo11n_openvino_model # OpenVINO
yolo11n.engine # TensorRT
yolo11n.mlpackage # CoreML (macOS-only)
yolo11n_saved_model # TensorFlow SavedModel
yolo11n.pb # TensorFlow GraphDef
yolo11n.tflite # TensorFlow Lite
yolo11n_edgetpu.tflite # TensorFlow Edge TPU
yolo11n_paddle_model # PaddlePaddle
yolo11n_ncnn_model # NCNN
TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolo11n_web_model public/yolo11n_web_model
$ npm start
"""
import gc
import json
import os
import shutil
import subprocess
import time
import warnings
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from ultralytics.cfg import TASK2DATA, get_cfg
from ultralytics.data import build_dataloader
from ultralytics.data.dataset import YOLODataset
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.nn.autobackend import check_class_names, default_class_names
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel
from ultralytics.utils import (
ARM64,
DEFAULT_CFG,
IS_JETSON,
LINUX,
LOGGER,
MACOS,
PYTHON_VERSION,
ROOT,
WINDOWS,
__version__,
callbacks,
colorstr,
get_default_args,
yaml_save,
)
from ultralytics.utils.checks import check_imgsz, check_is_path_safe, check_requirements, check_version
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
from ultralytics.utils.files import file_size, spaces_in_path
from ultralytics.utils.ops import Profile
from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device, smart_inference_mode
def export_formats():
"""Ultralytics YOLO export formats."""
x = [
["PyTorch", "-", ".pt", True, True],
["TorchScript", "torchscript", ".torchscript", True, True],
["ONNX", "onnx", ".onnx", True, True],
["OpenVINO", "openvino", "_openvino_model", True, False],
["TensorRT", "engine", ".engine", False, True],
["CoreML", "coreml", ".mlpackage", True, False],
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
["TensorFlow GraphDef", "pb", ".pb", True, True],
["TensorFlow Lite", "tflite", ".tflite", True, False],
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False],
["TensorFlow.js", "tfjs", "_web_model", True, False],
["PaddlePaddle", "paddle", "_paddle_model", True, True],
["NCNN", "ncnn", "_ncnn_model", True, True],
]
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU"], zip(*x)))
def gd_outputs(gd):
"""TensorFlow GraphDef model output node names."""
name_list, input_list = [], []
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
name_list.append(node.name)
input_list.extend(node.input)
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
def try_export(inner_func):
"""YOLO export decorator, i.e. @try_export."""
inner_args = get_default_args(inner_func)
def outer_func(*args, **kwargs):
"""Export a model."""
prefix = inner_args["prefix"]
try:
with Profile() as dt:
f, model = inner_func(*args, **kwargs)
LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as '{f}' ({file_size(f):.1f} MB)")
return f, model
except Exception as e:
LOGGER.error(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
raise e
return outer_func
class Exporter:
"""
A class for exporting a model.
Attributes:
args (SimpleNamespace): Configuration for the exporter.
callbacks (list, optional): List of callback functions. Defaults to None.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the Exporter class.
Args:
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
overrides (dict, optional): Configuration overrides. Defaults to None.
_callbacks (dict, optional): Dictionary of callback functions. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
if self.args.format.lower() in {"coreml", "mlmodel"}: # fix attempt for protobuf<3.20.x errors
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # must run before TensorBoard callback
self.callbacks = _callbacks or callbacks.get_default_callbacks()
callbacks.add_integration_callbacks(self)
@smart_inference_mode()
def __call__(self, model=None) -> str:
"""Returns list of exported files/dirs after running callbacks."""
self.run_callbacks("on_export_start")
t = time.time()
fmt = self.args.format.lower() # to lowercase
if fmt in {"tensorrt", "trt"}: # 'engine' aliases
fmt = "engine"
if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}: # 'coreml' aliases
fmt = "coreml"
fmts = tuple(export_formats()["Argument"][1:]) # available export formats
if fmt not in fmts:
import difflib
# Get the closest match if format is invalid
matches = difflib.get_close_matches(fmt, fmts, n=1, cutoff=0.6) # 60% similarity required to match
if not matches:
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
LOGGER.warning(f"WARNING ⚠️ Invalid export format='{fmt}', updating to format='{matches[0]}'")
fmt = matches[0]
flags = [x == fmt for x in fmts]
if sum(flags) != 1:
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags # export booleans
is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))
# Device
if fmt == "engine" and self.args.device is None:
LOGGER.warning("WARNING ⚠️ TensorRT requires GPU export, automatically assigning device=0")
self.args.device = "0"
self.device = select_device("cpu" if self.args.device is None else self.args.device)
# Checks
if not hasattr(model, "names"):
model.names = default_class_names()
model.names = check_class_names(model.names)
if self.args.half and self.args.int8:
LOGGER.warning("WARNING ⚠️ half=True and int8=True are mutually exclusive, setting half=False.")
self.args.half = False
if self.args.half and onnx and self.device.type == "cpu":
LOGGER.warning("WARNING ⚠️ half=True only compatible with GPU export, i.e. use device=0")
self.args.half = False
assert not self.args.dynamic, "half=True not compatible with dynamic=True, i.e. use only one."
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
if self.args.int8 and engine:
self.args.dynamic = True # enforce dynamic to export TensorRT INT8
if self.args.optimize:
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
if edgetpu:
if not LINUX:
raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler")
elif self.args.batch != 1: # see github.com/ultralytics/ultralytics/pull/13420
LOGGER.warning("WARNING ⚠️ Edge TPU export requires batch size 1, setting batch=1.")
self.args.batch = 1
if isinstance(model, WorldModel):
LOGGER.warning(
"WARNING ⚠️ YOLOWorld (original version) export is not supported to any format.\n"
"WARNING ⚠️ YOLOWorldv2 models (i.e. 'yolov8s-worldv2.pt') only support export to "
"(torchscript, onnx, openvino, engine, coreml) formats. "
"See https://docs.ultralytics.com/models/yolo-world for details."
)
if self.args.int8 and not self.args.data:
self.args.data = DEFAULT_CFG.data or TASK2DATA[getattr(model, "task", "detect")] # assign default data
LOGGER.warning(
"WARNING ⚠️ INT8 export requires a missing 'data' arg for calibration. "
f"Using default 'data={self.args.data}'."
)
# Input
im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
file = Path(
getattr(model, "pt_path", None) or getattr(model, "yaml_file", None) or model.yaml.get("yaml_file", "")
)
if file.suffix in {".yaml", ".yml"}:
file = Path(file.name)
# Update model
model = deepcopy(model).to(self.device)
for p in model.parameters():
p.requires_grad = False
model.eval()
model.float()
model = model.fuse()
for m in model.modules():
if isinstance(m, (Detect, RTDETRDecoder)): # includes all Detect subclasses like Segment, Pose, OBB
m.dynamic = self.args.dynamic
m.export = True
m.format = self.args.format
m.max_det = self.args.max_det
elif isinstance(m, C2f) and not is_tf_format:
# EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
m.forward = m.forward_split
y = None
for _ in range(2):
y = model(im) # dry runs
if self.args.half and onnx and self.device.type != "cpu":
im, model = im.half(), model.half() # to FP16
# Filter warnings
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning) # suppress TracerWarning
warnings.filterwarnings("ignore", category=UserWarning) # suppress shape prim::Constant missing ONNX warning
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress CoreML np.bool deprecation warning
# Assign
self.im = im
self.model = model
self.file = file
self.output_shape = (
tuple(y.shape)
if isinstance(y, torch.Tensor)
else tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y)
)
self.pretty_name = Path(self.model.yaml.get("yaml_file", self.file)).stem.replace("yolo", "YOLO")
data = model.args["data"] if hasattr(model, "args") and isinstance(model.args, dict) else ""
description = f'Ultralytics {self.pretty_name} model {f"trained on {data}" if data else ""}'
self.metadata = {
"description": description,
"author": "Ultralytics",
"date": datetime.now().isoformat(),
"version": __version__,
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
"docs": "https://docs.ultralytics.com",
"stride": int(max(model.stride)),
"task": model.task,
"batch": self.args.batch,
"imgsz": self.imgsz,
"names": model.names,
} # model metadata
if model.task == "pose":
self.metadata["kpt_shape"] = model.model[-1].kpt_shape
LOGGER.info(
f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and "
f'output shape(s) {self.output_shape} ({file_size(file):.1f} MB)'
)
# Exports
f = [""] * len(fmts) # exported filenames
if jit or ncnn: # TorchScript
f[0], _ = self.export_torchscript()
if engine: # TensorRT required before ONNX
f[1], _ = self.export_engine()
if onnx: # ONNX
f[2], _ = self.export_onnx()
if xml: # OpenVINO
f[3], _ = self.export_openvino()
if coreml: # CoreML
f[4], _ = self.export_coreml()
if is_tf_format: # TensorFlow formats
self.args.int8 |= edgetpu
f[5], keras_model = self.export_saved_model()
if pb or tfjs: # pb prerequisite to tfjs
f[6], _ = self.export_pb(keras_model=keras_model)
if tflite:
f[7], _ = self.export_tflite(keras_model=keras_model, nms=False, agnostic_nms=self.args.agnostic_nms)
if edgetpu:
f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f"{self.file.stem}_full_integer_quant.tflite")
if tfjs:
f[9], _ = self.export_tfjs()
if paddle: # PaddlePaddle
f[10], _ = self.export_paddle()
if ncnn: # NCNN
f[11], _ = self.export_ncnn()
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
f = str(Path(f[-1]))
square = self.imgsz[0] == self.imgsz[1]
s = (
""
if square
else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not "
f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
)
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(" ", "")
predict_data = f"data={data}" if model.task == "segment" and fmt == "pb" else ""
q = "int8" if self.args.int8 else "half" if self.args.half else "" # quantization
LOGGER.info(
f'\nExport complete ({time.time() - t:.1f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f'\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {q} {predict_data}'
f'\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={data} {q} {s}'
f'\nVisualize: https://netron.app'
)
self.run_callbacks("on_export_end")
return f # return list of exported files/dirs
def get_int8_calibration_dataloader(self, prefix=""):
"""Build and return a dataloader suitable for calibration of INT8 models."""
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
data = (check_cls_dataset if self.model.task == "classify" else check_det_dataset)(self.args.data)
# TensorRT INT8 calibration should use 2x batch size
batch = self.args.batch * (2 if self.args.format == "engine" else 1)
dataset = YOLODataset(
data[self.args.split or "val"],
data=data,
task=self.model.task,
imgsz=self.imgsz[0],
augment=False,
batch_size=batch,
)
n = len(dataset)
if n < 300:
LOGGER.warning(f"{prefix} WARNING ⚠️ >300 images recommended for INT8 calibration, found {n} images.")
return build_dataloader(dataset, batch=batch, workers=0) # required for batch loading
@try_export
def export_torchscript(self, prefix=colorstr("TorchScript:")):
"""YOLO TorchScript model export."""
LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
f = self.file.with_suffix(".torchscript")
ts = torch.jit.trace(self.model, self.im, strict=False)
extra_files = {"config.txt": json.dumps(self.metadata)} # torch._C.ExtraFilesMap()
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
LOGGER.info(f"{prefix} optimizing for mobile...")
from torch.utils.mobile_optimizer import optimize_for_mobile
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
else:
ts.save(str(f), _extra_files=extra_files)
return f, None
@try_export
def export_onnx(self, prefix=colorstr("ONNX:")):
"""YOLO ONNX export."""
requirements = ["onnx>=1.12.0"]
if self.args.simplify:
requirements += ["onnxslim==0.1.34", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
check_requirements(requirements)
import onnx # noqa
opset_version = self.args.opset or get_latest_opset()
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...")
f = str(self.file.with_suffix(".onnx"))
output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
dynamic = self.args.dynamic
if dynamic:
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
torch.onnx.export(
self.model.cpu() if dynamic else self.model, # dynamic=True only compatible with cpu
self.im.cpu() if dynamic else self.im,
f,
verbose=False,
opset_version=opset_version,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=["images"],
output_names=output_names,
dynamic_axes=dynamic or None,
)
# Checks
model_onnx = onnx.load(f) # load onnx model
# Simplify
if self.args.simplify:
try:
import onnxslim
LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...")
model_onnx = onnxslim.slim(model_onnx)
except Exception as e:
LOGGER.warning(f"{prefix} simplifier failure: {e}")
# Metadata
for k, v in self.metadata.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, f)
return f, model_onnx
@try_export
def export_openvino(self, prefix=colorstr("OpenVINO:")):
"""YOLO OpenVINO export."""
check_requirements(f'openvino{"<=2024.0.0" if ARM64 else ">=2024.0.0"}') # fix OpenVINO issue on ARM64
import openvino as ov
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={torch.__version__} is installed"
ov_model = ov.convert_model(
self.model,
input=None if self.args.dynamic else [self.im.shape],
example_input=self.im,
)
def serialize(ov_model, file):
"""Set RT info, serialize and save metadata YAML."""
ov_model.set_rt_info("YOLO", ["model_info", "model_type"])
ov_model.set_rt_info(True, ["model_info", "reverse_input_channels"])
ov_model.set_rt_info(114, ["model_info", "pad_value"])
ov_model.set_rt_info([255.0], ["model_info", "scale_values"])
ov_model.set_rt_info(self.args.iou, ["model_info", "iou_threshold"])
ov_model.set_rt_info([v.replace(" ", "_") for v in self.model.names.values()], ["model_info", "labels"])
if self.model.task != "classify":
ov_model.set_rt_info("fit_to_window_letterbox", ["model_info", "resize_type"])
ov.runtime.save_model(ov_model, file, compress_to_fp16=self.args.half)
yaml_save(Path(file).parent / "metadata.yaml", self.metadata) # add metadata.yaml
if self.args.int8:
fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}")
fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name)
check_requirements("nncf>=2.8.0")
import nncf
def transform_fn(data_item) -> np.ndarray:
"""Quantization transform function."""
data_item: torch.Tensor = data_item["img"] if isinstance(data_item, dict) else data_item
assert data_item.dtype == torch.uint8, "Input image must be uint8 for the quantization preprocessing"
im = data_item.numpy().astype(np.float32) / 255.0 # uint8 to fp16/32 and 0 - 255 to 0.0 - 1.0
return np.expand_dims(im, 0) if im.ndim == 3 else im
# Generate calibration data for integer quantization
ignored_scope = None
if isinstance(self.model.model[-1], Detect):
# Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
head_module_name = ".".join(list(self.model.named_modules())[-1][0].split(".")[:2])
ignored_scope = nncf.IgnoredScope( # ignore operations
patterns=[
f".*{head_module_name}/.*/Add",
f".*{head_module_name}/.*/Sub*",
f".*{head_module_name}/.*/Mul*",
f".*{head_module_name}/.*/Div*",
f".*{head_module_name}\\.dfl.*",
],
types=["Sigmoid"],
)
quantized_ov_model = nncf.quantize(
model=ov_model,
calibration_dataset=nncf.Dataset(self.get_int8_calibration_dataloader(prefix), transform_fn),
preset=nncf.QuantizationPreset.MIXED,
ignored_scope=ignored_scope,
)
serialize(quantized_ov_model, fq_ov)
return fq, None
f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}")
f_ov = str(Path(f) / self.file.with_suffix(".xml").name)
serialize(ov_model, f_ov)
return f, None
@try_export
def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
"""YOLO Paddle export."""
check_requirements(("paddlepaddle", "x2paddle"))
import x2paddle # noqa
from x2paddle.convert import pytorch2paddle # noqa
LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
f = str(self.file).replace(self.file.suffix, f"_paddle_model{os.sep}")
pytorch2paddle(module=self.model, save_dir=f, jit_type="trace", input_examples=[self.im]) # export
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
return f, None
@try_export
def export_ncnn(self, prefix=colorstr("NCNN:")):
"""YOLO NCNN export using PNNX https://github.com/pnnx/pnnx."""
check_requirements("ncnn")
import ncnn # noqa
LOGGER.info(f"\n{prefix} starting export with NCNN {ncnn.__version__}...")
f = Path(str(self.file).replace(self.file.suffix, f"_ncnn_model{os.sep}"))
f_ts = self.file.with_suffix(".torchscript")
name = Path("pnnx.exe" if WINDOWS else "pnnx") # PNNX filename
pnnx = name if name.is_file() else (ROOT / name)
if not pnnx.is_file():
LOGGER.warning(
f"{prefix} WARNING ⚠️ PNNX not found. Attempting to download binary file from "
"https://github.com/pnnx/pnnx/.\nNote PNNX Binary file must be placed in current working directory "
f"or in {ROOT}. See PNNX repo for full installation instructions."
)
system = "macos" if MACOS else "windows" if WINDOWS else "linux-aarch64" if ARM64 else "linux"
try:
release, assets = get_github_assets(repo="pnnx/pnnx")
asset = [x for x in assets if f"{system}.zip" in x][0]
assert isinstance(asset, str), "Unable to retrieve PNNX repo assets" # i.e. pnnx-20240410-macos.zip
LOGGER.info(f"{prefix} successfully found latest PNNX asset file {asset}")
except Exception as e:
release = "20240410"
asset = f"pnnx-{release}-{system}.zip"
LOGGER.warning(f"{prefix} WARNING ⚠️ PNNX GitHub assets not found: {e}, using default {asset}")
unzip_dir = safe_download(f"https://github.com/pnnx/pnnx/releases/download/{release}/{asset}", delete=True)
if check_is_path_safe(Path.cwd(), unzip_dir): # avoid path traversal security vulnerability
shutil.move(src=unzip_dir / name, dst=pnnx) # move binary to ROOT
pnnx.chmod(0o777) # set read, write, and execute permissions for everyone
shutil.rmtree(unzip_dir) # delete unzip dir
ncnn_args = [
f'ncnnparam={f / "model.ncnn.param"}',
f'ncnnbin={f / "model.ncnn.bin"}',
f'ncnnpy={f / "model_ncnn.py"}',
]
pnnx_args = [
f'pnnxparam={f / "model.pnnx.param"}',
f'pnnxbin={f / "model.pnnx.bin"}',
f'pnnxpy={f / "model_pnnx.py"}',
f'pnnxonnx={f / "model.pnnx.onnx"}',
]
cmd = [
str(pnnx),
str(f_ts),
*ncnn_args,
*pnnx_args,
f"fp16={int(self.args.half)}",
f"device={self.device.type}",
f'inputshape="{[self.args.batch, 3, *self.imgsz]}"',
]
f.mkdir(exist_ok=True) # make ncnn_model directory
LOGGER.info(f"{prefix} running '{' '.join(cmd)}'")
subprocess.run(cmd, check=True)
# Remove debug files
pnnx_files = [x.split("=")[-1] for x in pnnx_args]
for f_debug in ("debug.bin", "debug.param", "debug2.bin", "debug2.param", *pnnx_files):
Path(f_debug).unlink(missing_ok=True)
yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml
return str(f), None
@try_export
def export_coreml(self, prefix=colorstr("CoreML:")):
"""YOLO CoreML export."""
mlmodel = self.args.format.lower() == "mlmodel" # legacy *.mlmodel export format requested
check_requirements("coremltools>=6.0,<=6.2" if mlmodel else "coremltools>=7.0")
import coremltools as ct # noqa
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
assert not WINDOWS, "CoreML export is not supported on Windows, please run on macOS or Linux."
assert self.args.batch == 1, "CoreML batch sizes > 1 are not supported. Please retry at 'batch=1'."
f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage")
if f.is_dir():
shutil.rmtree(f)
if self.args.nms and getattr(self.model, "end2end", False):
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is not available for end2end models. Forcing 'nms=False'.")
self.args.nms = False
bias = [0.0, 0.0, 0.0]
scale = 1 / 255
classifier_config = None
if self.model.task == "classify":
classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None
model = self.model
elif self.model.task == "detect":
model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model
else:
if self.args.nms:
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolov8n.pt'.")
# TODO CoreML Segment and Pose model pipelining
model = self.model
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
ct_model = ct.convert(
ts,
inputs=[ct.ImageType("image", shape=self.im.shape, scale=scale, bias=bias)],
classifier_config=classifier_config,
convert_to="neuralnetwork" if mlmodel else "mlprogram",
)
bits, mode = (8, "kmeans") if self.args.int8 else (16, "linear") if self.args.half else (32, None)
if bits < 32:
if "kmeans" in mode:
check_requirements("scikit-learn") # scikit-learn package required for k-means quantization
if mlmodel:
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
elif bits == 8: # mlprogram already quantized to FP16
import coremltools.optimize.coreml as cto
op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512)
config = cto.OptimizationConfig(global_config=op_config)
ct_model = cto.palettize_weights(ct_model, config=config)
if self.args.nms and self.model.task == "detect":
if mlmodel:
# coremltools<=6.2 NMS export requires Python<3.11
check_version(PYTHON_VERSION, "<3.11", name="Python ", hard=True)
weights_dir = None
else:
ct_model.save(str(f)) # save otherwise weights_dir does not exist
weights_dir = str(f / "Data/com.apple.CoreML/weights")
ct_model = self._pipeline_coreml(ct_model, weights_dir=weights_dir)
m = self.metadata # metadata dict
ct_model.short_description = m.pop("description")
ct_model.author = m.pop("author")
ct_model.license = m.pop("license")
ct_model.version = m.pop("version")
ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()})
try:
ct_model.save(str(f)) # save *.mlpackage
except Exception as e:
LOGGER.warning(
f"{prefix} WARNING ⚠️ CoreML export to *.mlpackage failed ({e}), reverting to *.mlmodel export. "
f"Known coremltools Python 3.11 and Windows bugs https://github.com/apple/coremltools/issues/1928."
)
f = f.with_suffix(".mlmodel")
ct_model.save(str(f))
return f, ct_model
@try_export
def export_engine(self, prefix=colorstr("TensorRT:")):
"""YOLO TensorRT export https://developer.nvidia.com/tensorrt."""
assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
f_onnx, _ = self.export_onnx() # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016
try:
import tensorrt as trt # noqa
except ImportError:
if LINUX:
check_requirements("tensorrt>7.0.0,<=10.1.0")
import tensorrt as trt # noqa
check_version(trt.__version__, ">=7.0.0", hard=True)
check_version(trt.__version__, "<=10.1.0", msg="https://github.com/ultralytics/ultralytics/pull/14239")
# Setup and checks
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
f = self.file.with_suffix(".engine") # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if self.args.verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE
# Engine builder
builder = trt.Builder(logger)
config = builder.create_builder_config()
workspace = int(self.args.workspace * (1 << 30))
if is_trt10:
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
else: # TensorRT versions 7, 8
config.max_workspace_size = workspace
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flag)
half = builder.platform_has_fast_fp16 and self.args.half
int8 = builder.platform_has_fast_int8 and self.args.int8
# Read ONNX file
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(f_onnx):
raise RuntimeError(f"failed to load ONNX file: {f_onnx}")
# Network inputs
inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
for inp in inputs:
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
if self.args.dynamic:
shape = self.im.shape
if shape[0] <= 1:
LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
profile = builder.create_optimization_profile()
min_shape = (1, shape[1], 32, 32) # minimum input shape
max_shape = (*shape[:2], *(max(1, self.args.workspace) * d for d in shape[2:])) # max input shape
for inp in inputs:
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
config.add_optimization_profile(profile)
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {f}")
if int8:
config.set_flag(trt.BuilderFlag.INT8)
config.set_calibration_profile(profile)
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
class EngineCalibrator(trt.IInt8Calibrator):
def __init__(
self,
dataset, # ultralytics.data.build.InfiniteDataLoader
batch: int,
cache: str = "",
) -> None:
trt.IInt8Calibrator.__init__(self)
self.dataset = dataset
self.data_iter = iter(dataset)
self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
self.batch = batch
self.cache = Path(cache)
def get_algorithm(self) -> trt.CalibrationAlgoType:
"""Get the calibration algorithm to use."""
return self.algo
def get_batch_size(self) -> int:
"""Get the batch size to use for calibration."""
return self.batch or 1
def get_batch(self, names) -> list:
"""Get the next batch to use for calibration, as a list of device memory pointers."""
try:
im0s = next(self.data_iter)["img"] / 255.0
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
return [int(im0s.data_ptr())]
except StopIteration:
# Return [] or None, signal to TensorRT there is no calibration data remaining
return None
def read_calibration_cache(self) -> bytes:
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
if self.cache.exists() and self.cache.suffix == ".cache":
return self.cache.read_bytes()
def write_calibration_cache(self, cache) -> None:
"""Write calibration cache to disk."""
_ = self.cache.write_bytes(cache)
# Load dataset w/ builder (for batching) and calibrate
config.int8_calibrator = EngineCalibrator(
dataset=self.get_int8_calibration_dataloader(prefix),
batch=2 * self.args.batch, # TensorRT INT8 calibration should use 2x batch size
cache=str(self.file.with_suffix(".cache")),
)
elif half:
config.set_flag(trt.BuilderFlag.FP16)
# Free CUDA memory
del self.model
gc.collect()
torch.cuda.empty_cache()
# Write file
build = builder.build_serialized_network if is_trt10 else builder.build_engine
with build(network, config) as engine, open(f, "wb") as t:
# Metadata
meta = json.dumps(self.metadata)
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
t.write(meta.encode())
# Model
t.write(engine if is_trt10 else engine.serialize())
return f, None
@try_export
def export_saved_model(self, prefix=colorstr("TensorFlow SavedModel:")):
"""YOLO TensorFlow SavedModel export."""
cuda = torch.cuda.is_available()
try:
import tensorflow as tf # noqa
except ImportError:
suffix = "-macos" if MACOS else "-aarch64" if ARM64 else "" if cuda else "-cpu"
version = ">=2.0.0"
check_requirements(f"tensorflow{suffix}{version}")
import tensorflow as tf # noqa
check_requirements(
(
"keras", # required by 'onnx2tf' package
"tf_keras", # required by 'onnx2tf' package
"sng4onnx>=1.0.1", # required by 'onnx2tf' package
"onnx_graphsurgeon>=0.3.26", # required by 'onnx2tf' package
"onnx>=1.12.0",
"onnx2tf>1.17.5,<=1.22.3",
"onnxslim>=0.1.31",
"tflite_support<=0.4.3" if IS_JETSON else "tflite_support", # fix ImportError 'GLIBCXX_3.4.29'
"flatbuffers>=23.5.26,<100", # update old 'flatbuffers' included inside tensorflow package
"onnxruntime-gpu" if cuda else "onnxruntime",
),
cmds="--extra-index-url https://pypi.ngc.nvidia.com", # onnx_graphsurgeon only on NVIDIA
)
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
check_version(
tf.__version__,
">=2.0.0",
name="tensorflow",
verbose=True,
msg="https://github.com/ultralytics/ultralytics/issues/5161",
)
import onnx2tf
f = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
if f.is_dir():
shutil.rmtree(f) # delete output folder
# Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545
onnx2tf_file = Path("calibration_image_sample_data_20x128x128x3_float32.npy")
if not onnx2tf_file.exists():
attempt_download_asset(f"{onnx2tf_file}.zip", unzip=True, delete=True)
# Export to ONNX
self.args.simplify = True
f_onnx, _ = self.export_onnx()
# Export to TF
np_data = None
if self.args.int8:
tmp_file = f / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file
if self.args.data:
f.mkdir()
images = [batch["img"].permute(0, 2, 3, 1) for batch in self.get_int8_calibration_dataloader(prefix)]
images = torch.cat(images, 0).float()
np.save(str(tmp_file), images.numpy().astype(np.float32)) # BHWC
np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]
LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...")
keras_model = onnx2tf.convert(
input_onnx_file_path=f_onnx,
output_folder_path=str(f),
not_use_onnxsim=True,
verbosity="error", # note INT8-FP16 activation bug https://github.com/ultralytics/ultralytics/issues/15873
output_integer_quantized_tflite=self.args.int8,
quant_type="per-tensor", # "per-tensor" (faster) or "per-channel" (slower but more accurate)
custom_input_op_name_np_data_path=np_data,
disable_group_convolution=True, # for end-to-end model compatibility
enable_batchmatmul_unfold=True, # for end-to-end model compatibility
)
yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml
# Remove/rename TFLite models
if self.args.int8:
tmp_file.unlink(missing_ok=True)
for file in f.rglob("*_dynamic_range_quant.tflite"):
file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix))
for file in f.rglob("*_integer_quant_with_int16_act.tflite"):
file.unlink() # delete extra fp16 activation TFLite files
# Add TFLite metadata
for file in f.rglob("*.tflite"):
f.unlink() if "quant_with_int16_act.tflite" in str(f) else self._add_tflite_metadata(file)
return str(f), keras_model # or keras_model = tf.saved_model.load(f, tags=None, options=None)
@try_export
def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")):
"""YOLO TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow."""
import tensorflow as tf # noqa
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
f = self.file.with_suffix(".pb")
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(m)
frozen_func.graph.as_graph_def()
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
return f, None
@try_export
def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")):
"""YOLO TensorFlow Lite export."""
# BUG https://github.com/ultralytics/ultralytics/issues/13436
import tensorflow as tf # noqa
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
saved_model = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
if self.args.int8:
f = saved_model / f"{self.file.stem}_int8.tflite" # fp32 in/out
elif self.args.half:
f = saved_model / f"{self.file.stem}_float16.tflite" # fp32 in/out
else:
f = saved_model / f"{self.file.stem}_float32.tflite"
return str(f), None
@try_export
def export_edgetpu(self, tflite_model="", prefix=colorstr("Edge TPU:")):
"""YOLO Edge TPU export https://coral.ai/docs/edgetpu/models-intro/."""
LOGGER.warning(f"{prefix} WARNING ⚠️ Edge TPU known bug https://github.com/ultralytics/ultralytics/issues/1185")
cmd = "edgetpu_compiler --version"
help_url = "https://coral.ai/docs/edgetpu/compiler/"
assert LINUX, f"export only supported on Linux. See {help_url}"
if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0 # sudo installed on system
for c in (
"curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | '
"sudo tee /etc/apt/sources.list.d/coral-edgetpu.list",
"sudo apt-get update",
"sudo apt-get install edgetpu-compiler",
):
subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model
cmd = (
"edgetpu_compiler "
f'--out_dir "{Path(f).parent}" '
"--show_operations "
"--search_delegate "
"--delegate_search_step 3 "
"--timeout_sec 180 "
f'"{tflite_model}"'
)
LOGGER.info(f"{prefix} running '{cmd}'")
subprocess.run(cmd, shell=True)
self._add_tflite_metadata(f)
return f, None
@try_export
def export_tfjs(self, prefix=colorstr("TensorFlow.js:")):
"""YOLO TensorFlow.js export."""
check_requirements("tensorflowjs")
if ARM64:
# Fix error: `np.object` was a deprecated alias for the builtin `object` when exporting to TF.js on ARM64
check_requirements("numpy==1.23.5")
import tensorflow as tf
import tensorflowjs as tfjs # noqa
LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
f = str(self.file).replace(self.file.suffix, "_web_model") # js dir
f_pb = str(self.file.with_suffix(".pb")) # *.pb path
gd = tf.Graph().as_graph_def() # TF GraphDef
with open(f_pb, "rb") as file:
gd.ParseFromString(file.read())
outputs = ",".join(gd_outputs(gd))
LOGGER.info(f"\n{prefix} output node names: {outputs}")
quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else ""
with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path
cmd = (
"tensorflowjs_converter "
f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"'
)
LOGGER.info(f"{prefix} running '{cmd}'")
subprocess.run(cmd, shell=True)
if " " in f:
LOGGER.warning(f"{prefix} WARNING ⚠️ your model may not work correctly with spaces in path '{f}'.")
# Add metadata
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
return f, None
def _add_tflite_metadata(self, file):
"""Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata."""
import flatbuffers
try:
# TFLite Support bug https://github.com/tensorflow/tflite-support/issues/954#issuecomment-2108570845
from tensorflow_lite_support.metadata import metadata_schema_py_generated as schema # noqa
from tensorflow_lite_support.metadata.python import metadata # noqa
except ImportError: # ARM64 systems may not have the 'tensorflow_lite_support' package available
from tflite_support import metadata # noqa
from tflite_support import metadata_schema_py_generated as schema # noqa
# Create model info
model_meta = schema.ModelMetadataT()
model_meta.name = self.metadata["description"]
model_meta.version = self.metadata["version"]
model_meta.author = self.metadata["author"]
model_meta.license = self.metadata["license"]
# Label file
tmp_file = Path(file).parent / "temp_meta.txt"
with open(tmp_file, "w") as f:
f.write(str(self.metadata))
label_file = schema.AssociatedFileT()
label_file.name = tmp_file.name
label_file.type = schema.AssociatedFileType.TENSOR_AXIS_LABELS
# Create input info
input_meta = schema.TensorMetadataT()
input_meta.name = "image"
input_meta.description = "Input image to be detected."
input_meta.content = schema.ContentT()
input_meta.content.contentProperties = schema.ImagePropertiesT()
input_meta.content.contentProperties.colorSpace = schema.ColorSpaceType.RGB
input_meta.content.contentPropertiesType = schema.ContentProperties.ImageProperties
# Create output info
output1 = schema.TensorMetadataT()
output1.name = "output"
output1.description = "Coordinates of detected objects, class labels, and confidence score"
output1.associatedFiles = [label_file]
if self.model.task == "segment":
output2 = schema.TensorMetadataT()
output2.name = "output"
output2.description = "Mask protos"
output2.associatedFiles = [label_file]
# Create subgraph info
subgraph = schema.SubGraphMetadataT()
subgraph.inputTensorMetadata = [input_meta]
subgraph.outputTensorMetadata = [output1, output2] if self.model.task == "segment" else [output1]
model_meta.subgraphMetadata = [subgraph]
b = flatbuffers.Builder(0)
b.Finish(model_meta.Pack(b), metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
metadata_buf = b.Output()
populator = metadata.MetadataPopulator.with_model_file(str(file))
populator.load_metadata_buffer(metadata_buf)
populator.load_associated_files([str(tmp_file)])
populator.populate()
tmp_file.unlink()
def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")):
"""YOLO CoreML pipeline."""
import coremltools as ct # noqa
LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
_, _, h, w = list(self.im.shape) # BCHW
# Output shapes
spec = model.get_spec()
out0, out1 = iter(spec.description.output)
if MACOS:
from PIL import Image
img = Image.new("RGB", (w, h)) # w=192, h=320
out = model.predict({"image": img})
out0_shape = out[out0.name].shape # (3780, 80)
out1_shape = out[out1.name].shape # (3780, 4)
else: # linux and windows can not run model.predict(), get sizes from PyTorch model output y
out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80)
out1_shape = self.output_shape[2], 4 # (3780, 4)
# Checks
names = self.metadata["names"]
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
_, nc = out0_shape # number of anchors, number of classes
assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check
# Define output shapes (missing)
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
# Model from spec
model = ct.models.MLModel(spec, weights_dir=weights_dir)
# 3. Create NMS protobuf
nms_spec = ct.proto.Model_pb2.Model()
nms_spec.specificationVersion = 5
for i in range(2):
decoder_output = model._spec.description.output[i].SerializeToString()
nms_spec.description.input.add()
nms_spec.description.input[i].ParseFromString(decoder_output)
nms_spec.description.output.add()
nms_spec.description.output[i].ParseFromString(decoder_output)
nms_spec.description.output[0].name = "confidence"
nms_spec.description.output[1].name = "coordinates"
output_sizes = [nc, 4]
for i in range(2):
ma_type = nms_spec.description.output[i].type.multiArrayType
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
ma_type.shapeRange.sizeRanges[0].upperBound = -1
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
del ma_type.shape[:]
nms = nms_spec.nonMaximumSuppression
nms.confidenceInputFeatureName = out0.name # 1x507x80
nms.coordinatesInputFeatureName = out1.name # 1x507x4
nms.confidenceOutputFeatureName = "confidence"
nms.coordinatesOutputFeatureName = "coordinates"
nms.iouThresholdInputFeatureName = "iouThreshold"
nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
nms.iouThreshold = 0.45
nms.confidenceThreshold = 0.25
nms.pickTop.perClass = True
nms.stringClassLabels.vector.extend(names.values())
nms_model = ct.models.MLModel(nms_spec)
# 4. Pipeline models together
pipeline = ct.models.pipeline.Pipeline(
input_features=[
("image", ct.models.datatypes.Array(3, ny, nx)),
("iouThreshold", ct.models.datatypes.Double()),
("confidenceThreshold", ct.models.datatypes.Double()),
],
output_features=["confidence", "coordinates"],
)
pipeline.add_model(model)
pipeline.add_model(nms_model)
# Correct datatypes
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
# Update metadata
pipeline.spec.specificationVersion = 5
pipeline.spec.description.metadata.userDefined.update(
{"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)}
)
# Save the model
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
model.input_description["image"] = "Input image"
model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})"
model.input_description["confidenceThreshold"] = (
f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})"
)
model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
LOGGER.info(f"{prefix} pipeline success")
return model
def add_callback(self, event: str, callback):
"""Appends the given callback."""
self.callbacks[event].append(callback)
def run_callbacks(self, event: str):
"""Execute all callbacks for a given event."""
for callback in self.callbacks.get(event, []):
callback(self)
class IOSDetectModel(torch.nn.Module):
"""Wrap an Ultralytics YOLO model for Apple iOS CoreML export."""
def __init__(self, model, im):
"""Initialize the IOSDetectModel class with a YOLO model and example image."""
super().__init__()
_, _, h, w = im.shape # batch, channel, height, width
self.model = model
self.nc = len(model.names) # number of classes
if w == h:
self.normalize = 1.0 / w # scalar
else:
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
def forward(self, x):
"""Normalize predictions of object detection model with input size-dependent factors."""
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|