File size: 23,454 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# Ultralytics YOLO 🚀, AGPL-3.0 license

import json
from collections import defaultdict
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path

import cv2
import numpy as np
import torch
from PIL import Image
from torch.utils.data import ConcatDataset

from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM, colorstr
from ultralytics.utils.ops import resample_segments
from ultralytics.utils.torch_utils import TORCHVISION_0_18

from .augment import (
    Compose,
    Format,
    Instances,
    LetterBox,
    RandomLoadText,
    classify_augmentations,
    classify_transforms,
    v8_transforms,
)
from .base import BaseDataset
from .utils import (
    HELP_URL,
    LOGGER,
    get_hash,
    img2label_paths,
    load_dataset_cache_file,
    save_dataset_cache_file,
    verify_image,
    verify_image_label,
)

# Ultralytics dataset *.cache version, >= 1.0.0 for YOLOv8
DATASET_CACHE_VERSION = "1.0.3"


class YOLODataset(BaseDataset):
    """

    Dataset class for loading object detection and/or segmentation labels in YOLO format.



    Args:

        data (dict, optional): A dataset YAML dictionary. Defaults to None.

        task (str): An explicit arg to point current task, Defaults to 'detect'.



    Returns:

        (torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.

    """

    def __init__(self, *args, data=None, task="detect", **kwargs):
        """Initializes the YOLODataset with optional configurations for segments and keypoints."""
        self.use_segments = task == "segment"
        self.use_keypoints = task == "pose"
        self.use_obb = task == "obb"
        self.data = data
        assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints."
        super().__init__(*args, **kwargs)

    def cache_labels(self, path=Path("./labels.cache")):
        """

        Cache dataset labels, check images and read shapes.



        Args:

            path (Path): Path where to save the cache file. Default is Path('./labels.cache').



        Returns:

            (dict): labels.

        """
        x = {"labels": []}
        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
        desc = f"{self.prefix}Scanning {path.parent / path.stem}..."
        total = len(self.im_files)
        nkpt, ndim = self.data.get("kpt_shape", (0, 0))
        if self.use_keypoints and (nkpt <= 0 or ndim not in {2, 3}):
            raise ValueError(
                "'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of "
                "keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'"
            )
        with ThreadPool(NUM_THREADS) as pool:
            results = pool.imap(
                func=verify_image_label,
                iterable=zip(
                    self.im_files,
                    self.label_files,
                    repeat(self.prefix),
                    repeat(self.use_keypoints),
                    repeat(len(self.data["names"])),
                    repeat(nkpt),
                    repeat(ndim),
                ),
            )
            pbar = TQDM(results, desc=desc, total=total)
            for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar:
                nm += nm_f
                nf += nf_f
                ne += ne_f
                nc += nc_f
                if im_file:
                    x["labels"].append(
                        {
                            "im_file": im_file,
                            "shape": shape,
                            "cls": lb[:, 0:1],  # n, 1
                            "bboxes": lb[:, 1:],  # n, 4
                            "segments": segments,
                            "keypoints": keypoint,
                            "normalized": True,
                            "bbox_format": "xywh",
                        }
                    )
                if msg:
                    msgs.append(msg)
                pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
            pbar.close()

        if msgs:
            LOGGER.info("\n".join(msgs))
        if nf == 0:
            LOGGER.warning(f"{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}")
        x["hash"] = get_hash(self.label_files + self.im_files)
        x["results"] = nf, nm, ne, nc, len(self.im_files)
        x["msgs"] = msgs  # warnings
        save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
        return x

    def get_labels(self):
        """Returns dictionary of labels for YOLO training."""
        self.label_files = img2label_paths(self.im_files)
        cache_path = Path(self.label_files[0]).parent.with_suffix(".cache")
        try:
            cache, exists = load_dataset_cache_file(cache_path), True  # attempt to load a *.cache file
            assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
            assert cache["hash"] == get_hash(self.label_files + self.im_files)  # identical hash
        except (FileNotFoundError, AssertionError, AttributeError):
            cache, exists = self.cache_labels(cache_path), False  # run cache ops

        # Display cache
        nf, nm, ne, nc, n = cache.pop("results")  # found, missing, empty, corrupt, total
        if exists and LOCAL_RANK in {-1, 0}:
            d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
            TQDM(None, desc=self.prefix + d, total=n, initial=n)  # display results
            if cache["msgs"]:
                LOGGER.info("\n".join(cache["msgs"]))  # display warnings

        # Read cache
        [cache.pop(k) for k in ("hash", "version", "msgs")]  # remove items
        labels = cache["labels"]
        if not labels:
            LOGGER.warning(f"WARNING ⚠️ No images found in {cache_path}, training may not work correctly. {HELP_URL}")
        self.im_files = [lb["im_file"] for lb in labels]  # update im_files

        # Check if the dataset is all boxes or all segments
        lengths = ((len(lb["cls"]), len(lb["bboxes"]), len(lb["segments"])) for lb in labels)
        len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
        if len_segments and len_boxes != len_segments:
            LOGGER.warning(
                f"WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, "
                f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. "
                "To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset."
            )
            for lb in labels:
                lb["segments"] = []
        if len_cls == 0:
            LOGGER.warning(f"WARNING ⚠️ No labels found in {cache_path}, training may not work correctly. {HELP_URL}")
        return labels

    def build_transforms(self, hyp=None):
        """Builds and appends transforms to the list."""
        if self.augment:
            hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
            hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
            transforms = v8_transforms(self, self.imgsz, hyp)
        else:
            transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
        transforms.append(
            Format(
                bbox_format="xywh",
                normalize=True,
                return_mask=self.use_segments,
                return_keypoint=self.use_keypoints,
                return_obb=self.use_obb,
                batch_idx=True,
                mask_ratio=hyp.mask_ratio,
                mask_overlap=hyp.overlap_mask,
                bgr=hyp.bgr if self.augment else 0.0,  # only affect training.
            )
        )
        return transforms

    def close_mosaic(self, hyp):
        """Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations."""
        hyp.mosaic = 0.0  # set mosaic ratio=0.0
        hyp.copy_paste = 0.0  # keep the same behavior as previous v8 close-mosaic
        hyp.mixup = 0.0  # keep the same behavior as previous v8 close-mosaic
        self.transforms = self.build_transforms(hyp)

    def update_labels_info(self, label):
        """

        Custom your label format here.



        Note:

            cls is not with bboxes now, classification and semantic segmentation need an independent cls label

            Can also support classification and semantic segmentation by adding or removing dict keys there.

        """
        bboxes = label.pop("bboxes")
        segments = label.pop("segments", [])
        keypoints = label.pop("keypoints", None)
        bbox_format = label.pop("bbox_format")
        normalized = label.pop("normalized")

        # NOTE: do NOT resample oriented boxes
        segment_resamples = 100 if self.use_obb else 1000
        if len(segments) > 0:
            # list[np.array(1000, 2)] * num_samples
            # (N, 1000, 2)
            segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0)
        else:
            segments = np.zeros((0, segment_resamples, 2), dtype=np.float32)
        label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
        return label

    @staticmethod
    def collate_fn(batch):
        """Collates data samples into batches."""
        new_batch = {}
        keys = batch[0].keys()
        values = list(zip(*[list(b.values()) for b in batch]))
        for i, k in enumerate(keys):
            value = values[i]
            if k == "img":
                value = torch.stack(value, 0)
            if k in {"masks", "keypoints", "bboxes", "cls", "segments", "obb"}:
                value = torch.cat(value, 0)
            new_batch[k] = value
        new_batch["batch_idx"] = list(new_batch["batch_idx"])
        for i in range(len(new_batch["batch_idx"])):
            new_batch["batch_idx"][i] += i  # add target image index for build_targets()
        new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0)
        return new_batch


class YOLOMultiModalDataset(YOLODataset):
    """

    Dataset class for loading object detection and/or segmentation labels in YOLO format.



    Args:

        data (dict, optional): A dataset YAML dictionary. Defaults to None.

        task (str): An explicit arg to point current task, Defaults to 'detect'.



    Returns:

        (torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.

    """

    def __init__(self, *args, data=None, task="detect", **kwargs):
        """Initializes a dataset object for object detection tasks with optional specifications."""
        super().__init__(*args, data=data, task=task, **kwargs)

    def update_labels_info(self, label):
        """Add texts information for multi-modal model training."""
        labels = super().update_labels_info(label)
        # NOTE: some categories are concatenated with its synonyms by `/`.
        labels["texts"] = [v.split("/") for _, v in self.data["names"].items()]
        return labels

    def build_transforms(self, hyp=None):
        """Enhances data transformations with optional text augmentation for multi-modal training."""
        transforms = super().build_transforms(hyp)
        if self.augment:
            # NOTE: hard-coded the args for now.
            transforms.insert(-1, RandomLoadText(max_samples=min(self.data["nc"], 80), padding=True))
        return transforms


class GroundingDataset(YOLODataset):
    """Handles object detection tasks by loading annotations from a specified JSON file, supporting YOLO format."""

    def __init__(self, *args, task="detect", json_file, **kwargs):
        """Initializes a GroundingDataset for object detection, loading annotations from a specified JSON file."""
        assert task == "detect", "`GroundingDataset` only support `detect` task for now!"
        self.json_file = json_file
        super().__init__(*args, task=task, data={}, **kwargs)

    def get_img_files(self, img_path):
        """The image files would be read in `get_labels` function, return empty list here."""
        return []

    def get_labels(self):
        """Loads annotations from a JSON file, filters, and normalizes bounding boxes for each image."""
        labels = []
        LOGGER.info("Loading annotation file...")
        with open(self.json_file) as f:
            annotations = json.load(f)
        images = {f'{x["id"]:d}': x for x in annotations["images"]}
        img_to_anns = defaultdict(list)
        for ann in annotations["annotations"]:
            img_to_anns[ann["image_id"]].append(ann)
        for img_id, anns in TQDM(img_to_anns.items(), desc=f"Reading annotations {self.json_file}"):
            img = images[f"{img_id:d}"]
            h, w, f = img["height"], img["width"], img["file_name"]
            im_file = Path(self.img_path) / f
            if not im_file.exists():
                continue
            self.im_files.append(str(im_file))
            bboxes = []
            cat2id = {}
            texts = []
            for ann in anns:
                if ann["iscrowd"]:
                    continue
                box = np.array(ann["bbox"], dtype=np.float32)
                box[:2] += box[2:] / 2
                box[[0, 2]] /= float(w)
                box[[1, 3]] /= float(h)
                if box[2] <= 0 or box[3] <= 0:
                    continue

                cat_name = " ".join([img["caption"][t[0] : t[1]] for t in ann["tokens_positive"]])
                if cat_name not in cat2id:
                    cat2id[cat_name] = len(cat2id)
                    texts.append([cat_name])
                cls = cat2id[cat_name]  # class
                box = [cls] + box.tolist()
                if box not in bboxes:
                    bboxes.append(box)
            lb = np.array(bboxes, dtype=np.float32) if len(bboxes) else np.zeros((0, 5), dtype=np.float32)
            labels.append(
                {
                    "im_file": im_file,
                    "shape": (h, w),
                    "cls": lb[:, 0:1],  # n, 1
                    "bboxes": lb[:, 1:],  # n, 4
                    "normalized": True,
                    "bbox_format": "xywh",
                    "texts": texts,
                }
            )
        return labels

    def build_transforms(self, hyp=None):
        """Configures augmentations for training with optional text loading; `hyp` adjusts augmentation intensity."""
        transforms = super().build_transforms(hyp)
        if self.augment:
            # NOTE: hard-coded the args for now.
            transforms.insert(-1, RandomLoadText(max_samples=80, padding=True))
        return transforms


class YOLOConcatDataset(ConcatDataset):
    """

    Dataset as a concatenation of multiple datasets.



    This class is useful to assemble different existing datasets.

    """

    @staticmethod
    def collate_fn(batch):
        """Collates data samples into batches."""
        return YOLODataset.collate_fn(batch)


# TODO: support semantic segmentation
class SemanticDataset(BaseDataset):
    """

    Semantic Segmentation Dataset.



    This class is responsible for handling datasets used for semantic segmentation tasks. It inherits functionalities

    from the BaseDataset class.



    Note:

        This class is currently a placeholder and needs to be populated with methods and attributes for supporting

        semantic segmentation tasks.

    """

    def __init__(self):
        """Initialize a SemanticDataset object."""
        super().__init__()


class ClassificationDataset:
    """

    Extends torchvision ImageFolder to support YOLO classification tasks, offering functionalities like image

    augmentation, caching, and verification. It's designed to efficiently handle large datasets for training deep

    learning models, with optional image transformations and caching mechanisms to speed up training.



    This class allows for augmentations using both torchvision and Albumentations libraries, and supports caching images

    in RAM or on disk to reduce IO overhead during training. Additionally, it implements a robust verification process

    to ensure data integrity and consistency.



    Attributes:

        cache_ram (bool): Indicates if caching in RAM is enabled.

        cache_disk (bool): Indicates if caching on disk is enabled.

        samples (list): A list of tuples, each containing the path to an image, its class index, path to its .npy cache

                        file (if caching on disk), and optionally the loaded image array (if caching in RAM).

        torch_transforms (callable): PyTorch transforms to be applied to the images.

    """

    def __init__(self, root, args, augment=False, prefix=""):
        """

        Initialize YOLO object with root, image size, augmentations, and cache settings.



        Args:

            root (str): Path to the dataset directory where images are stored in a class-specific folder structure.

            args (Namespace): Configuration containing dataset-related settings such as image size, augmentation

                parameters, and cache settings. It includes attributes like `imgsz` (image size), `fraction` (fraction

                of data to use), `scale`, `fliplr`, `flipud`, `cache` (disk or RAM caching for faster training),

                `auto_augment`, `hsv_h`, `hsv_s`, `hsv_v`, and `crop_fraction`.

            augment (bool, optional): Whether to apply augmentations to the dataset. Default is False.

            prefix (str, optional): Prefix for logging and cache filenames, aiding in dataset identification and

                debugging. Default is an empty string.

        """
        import torchvision  # scope for faster 'import ultralytics'

        # Base class assigned as attribute rather than used as base class to allow for scoping slow torchvision import
        if TORCHVISION_0_18:  # 'allow_empty' argument first introduced in torchvision 0.18
            self.base = torchvision.datasets.ImageFolder(root=root, allow_empty=True)
        else:
            self.base = torchvision.datasets.ImageFolder(root=root)
        self.samples = self.base.samples
        self.root = self.base.root

        # Initialize attributes
        if augment and args.fraction < 1.0:  # reduce training fraction
            self.samples = self.samples[: round(len(self.samples) * args.fraction)]
        self.prefix = colorstr(f"{prefix}: ") if prefix else ""
        self.cache_ram = args.cache is True or str(args.cache).lower() == "ram"  # cache images into RAM
        if self.cache_ram:
            LOGGER.warning(
                "WARNING ⚠️ Classification `cache_ram` training has known memory leak in "
                "https://github.com/ultralytics/ultralytics/issues/9824, setting `cache_ram=False`."
            )
            self.cache_ram = False
        self.cache_disk = str(args.cache).lower() == "disk"  # cache images on hard drive as uncompressed *.npy files
        self.samples = self.verify_images()  # filter out bad images
        self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples]  # file, index, npy, im
        scale = (1.0 - args.scale, 1.0)  # (0.08, 1.0)
        self.torch_transforms = (
            classify_augmentations(
                size=args.imgsz,
                scale=scale,
                hflip=args.fliplr,
                vflip=args.flipud,
                erasing=args.erasing,
                auto_augment=args.auto_augment,
                hsv_h=args.hsv_h,
                hsv_s=args.hsv_s,
                hsv_v=args.hsv_v,
            )
            if augment
            else classify_transforms(size=args.imgsz, crop_fraction=args.crop_fraction)
        )

    def __getitem__(self, i):
        """Returns subset of data and targets corresponding to given indices."""
        f, j, fn, im = self.samples[i]  # filename, index, filename.with_suffix('.npy'), image
        if self.cache_ram:
            if im is None:  # Warning: two separate if statements required here, do not combine this with previous line
                im = self.samples[i][3] = cv2.imread(f)
        elif self.cache_disk:
            if not fn.exists():  # load npy
                np.save(fn.as_posix(), cv2.imread(f), allow_pickle=False)
            im = np.load(fn)
        else:  # read image
            im = cv2.imread(f)  # BGR
        # Convert NumPy array to PIL image
        im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))
        sample = self.torch_transforms(im)
        return {"img": sample, "cls": j}

    def __len__(self) -> int:
        """Return the total number of samples in the dataset."""
        return len(self.samples)

    def verify_images(self):
        """Verify all images in dataset."""
        desc = f"{self.prefix}Scanning {self.root}..."
        path = Path(self.root).with_suffix(".cache")  # *.cache file path

        try:
            cache = load_dataset_cache_file(path)  # attempt to load a *.cache file
            assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
            assert cache["hash"] == get_hash([x[0] for x in self.samples])  # identical hash
            nf, nc, n, samples = cache.pop("results")  # found, missing, empty, corrupt, total
            if LOCAL_RANK in {-1, 0}:
                d = f"{desc} {nf} images, {nc} corrupt"
                TQDM(None, desc=d, total=n, initial=n)
                if cache["msgs"]:
                    LOGGER.info("\n".join(cache["msgs"]))  # display warnings
            return samples

        except (FileNotFoundError, AssertionError, AttributeError):
            # Run scan if *.cache retrieval failed
            nf, nc, msgs, samples, x = 0, 0, [], [], {}
            with ThreadPool(NUM_THREADS) as pool:
                results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix)))
                pbar = TQDM(results, desc=desc, total=len(self.samples))
                for sample, nf_f, nc_f, msg in pbar:
                    if nf_f:
                        samples.append(sample)
                    if msg:
                        msgs.append(msg)
                    nf += nf_f
                    nc += nc_f
                    pbar.desc = f"{desc} {nf} images, {nc} corrupt"
                pbar.close()
            if msgs:
                LOGGER.info("\n".join(msgs))
            x["hash"] = get_hash([x[0] for x in self.samples])
            x["results"] = nf, nc, len(samples), samples
            x["msgs"] = msgs  # warnings
            save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
            return samples