File size: 24,949 Bytes
f6228f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
# Ultralytics YOLO π, AGPL-3.0 license
import json
import random
import shutil
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
import cv2
import numpy as np
from PIL import Image
from ultralytics.utils import DATASETS_DIR, LOGGER, NUM_THREADS, TQDM
from ultralytics.utils.downloads import download
from ultralytics.utils.files import increment_path
def coco91_to_coco80_class():
"""
Converts 91-index COCO class IDs to 80-index COCO class IDs.
Returns:
(list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the
corresponding 91-index class ID.
"""
return [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
None,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
None,
24,
25,
None,
None,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
None,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
None,
60,
None,
None,
61,
None,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
None,
73,
74,
75,
76,
77,
78,
79,
None,
]
def coco80_to_coco91_class():
r"""
Converts 80-index (val2014) to 91-index (paper).
For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.
Example:
```python
import numpy as np
a = np.loadtxt("data/coco.names", dtype="str", delimiter="\n")
b = np.loadtxt("data/coco_paper.names", dtype="str", delimiter="\n")
x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
```
"""
return [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
27,
28,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
67,
70,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
84,
85,
86,
87,
88,
89,
90,
]
def convert_coco(
labels_dir="../coco/annotations/",
save_dir="coco_converted/",
use_segments=False,
use_keypoints=False,
cls91to80=True,
lvis=False,
):
"""
Converts COCO dataset annotations to a YOLO annotation format suitable for training YOLO models.
Args:
labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
save_dir (str, optional): Path to directory to save results to.
use_segments (bool, optional): Whether to include segmentation masks in the output.
use_keypoints (bool, optional): Whether to include keypoint annotations in the output.
cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.
lvis (bool, optional): Whether to convert data in lvis dataset way.
Example:
```python
from ultralytics.data.converter import convert_coco
convert_coco("../datasets/coco/annotations/", use_segments=True, use_keypoints=False, cls91to80=True)
convert_coco("../datasets/lvis/annotations/", use_segments=True, use_keypoints=False, cls91to80=False, lvis=True)
```
Output:
Generates output files in the specified output directory.
"""
# Create dataset directory
save_dir = increment_path(save_dir) # increment if save directory already exists
for p in save_dir / "labels", save_dir / "images":
p.mkdir(parents=True, exist_ok=True) # make dir
# Convert classes
coco80 = coco91_to_coco80_class()
# Import json
for json_file in sorted(Path(labels_dir).resolve().glob("*.json")):
lname = "" if lvis else json_file.stem.replace("instances_", "")
fn = Path(save_dir) / "labels" / lname # folder name
fn.mkdir(parents=True, exist_ok=True)
if lvis:
# NOTE: create folders for both train and val in advance,
# since LVIS val set contains images from COCO 2017 train in addition to the COCO 2017 val split.
(fn / "train2017").mkdir(parents=True, exist_ok=True)
(fn / "val2017").mkdir(parents=True, exist_ok=True)
with open(json_file) as f:
data = json.load(f)
# Create image dict
images = {f'{x["id"]:d}': x for x in data["images"]}
# Create image-annotations dict
imgToAnns = defaultdict(list)
for ann in data["annotations"]:
imgToAnns[ann["image_id"]].append(ann)
image_txt = []
# Write labels file
for img_id, anns in TQDM(imgToAnns.items(), desc=f"Annotations {json_file}"):
img = images[f"{img_id:d}"]
h, w = img["height"], img["width"]
f = str(Path(img["coco_url"]).relative_to("http://images.cocodataset.org")) if lvis else img["file_name"]
if lvis:
image_txt.append(str(Path("./images") / f))
bboxes = []
segments = []
keypoints = []
for ann in anns:
if ann.get("iscrowd", False):
continue
# The COCO box format is [top left x, top left y, width, height]
box = np.array(ann["bbox"], dtype=np.float64)
box[:2] += box[2:] / 2 # xy top-left corner to center
box[[0, 2]] /= w # normalize x
box[[1, 3]] /= h # normalize y
if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0
continue
cls = coco80[ann["category_id"] - 1] if cls91to80 else ann["category_id"] - 1 # class
box = [cls] + box.tolist()
if box not in bboxes:
bboxes.append(box)
if use_segments and ann.get("segmentation") is not None:
if len(ann["segmentation"]) == 0:
segments.append([])
continue
elif len(ann["segmentation"]) > 1:
s = merge_multi_segment(ann["segmentation"])
s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist()
else:
s = [j for i in ann["segmentation"] for j in i] # all segments concatenated
s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist()
s = [cls] + s
segments.append(s)
if use_keypoints and ann.get("keypoints") is not None:
keypoints.append(
box + (np.array(ann["keypoints"]).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist()
)
# Write
with open((fn / f).with_suffix(".txt"), "a") as file:
for i in range(len(bboxes)):
if use_keypoints:
line = (*(keypoints[i]),) # cls, box, keypoints
else:
line = (
*(segments[i] if use_segments and len(segments[i]) > 0 else bboxes[i]),
) # cls, box or segments
file.write(("%g " * len(line)).rstrip() % line + "\n")
if lvis:
with open((Path(save_dir) / json_file.name.replace("lvis_v1_", "").replace(".json", ".txt")), "a") as f:
f.writelines(f"{line}\n" for line in image_txt)
LOGGER.info(f"{'LVIS' if lvis else 'COCO'} data converted successfully.\nResults saved to {save_dir.resolve()}")
def convert_segment_masks_to_yolo_seg(masks_dir, output_dir, classes):
"""
Converts a dataset of segmentation mask images to the YOLO segmentation format.
This function takes the directory containing the binary format mask images and converts them into YOLO segmentation format.
The converted masks are saved in the specified output directory.
Args:
masks_dir (str): The path to the directory where all mask images (png, jpg) are stored.
output_dir (str): The path to the directory where the converted YOLO segmentation masks will be stored.
classes (int): Total classes in the dataset i.e. for COCO classes=80
Example:
```python
from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
# The classes here is the total classes in the dataset, for COCO dataset we have 80 classes
convert_segment_masks_to_yolo_seg("path/to/masks_directory", "path/to/output/directory", classes=80)
```
Notes:
The expected directory structure for the masks is:
- masks
ββ mask_image_01.png or mask_image_01.jpg
ββ mask_image_02.png or mask_image_02.jpg
ββ mask_image_03.png or mask_image_03.jpg
ββ mask_image_04.png or mask_image_04.jpg
After execution, the labels will be organized in the following structure:
- output_dir
ββ mask_yolo_01.txt
ββ mask_yolo_02.txt
ββ mask_yolo_03.txt
ββ mask_yolo_04.txt
"""
pixel_to_class_mapping = {i + 1: i for i in range(classes)}
for mask_path in Path(masks_dir).iterdir():
if mask_path.suffix == ".png":
mask = cv2.imread(str(mask_path), cv2.IMREAD_GRAYSCALE) # Read the mask image in grayscale
img_height, img_width = mask.shape # Get image dimensions
LOGGER.info(f"Processing {mask_path} imgsz = {img_height} x {img_width}")
unique_values = np.unique(mask) # Get unique pixel values representing different classes
yolo_format_data = []
for value in unique_values:
if value == 0:
continue # Skip background
class_index = pixel_to_class_mapping.get(value, -1)
if class_index == -1:
LOGGER.warning(f"Unknown class for pixel value {value} in file {mask_path}, skipping.")
continue
# Create a binary mask for the current class and find contours
contours, _ = cv2.findContours(
(mask == value).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
) # Find contours
for contour in contours:
if len(contour) >= 3: # YOLO requires at least 3 points for a valid segmentation
contour = contour.squeeze() # Remove single-dimensional entries
yolo_format = [class_index]
for point in contour:
# Normalize the coordinates
yolo_format.append(round(point[0] / img_width, 6)) # Rounding to 6 decimal places
yolo_format.append(round(point[1] / img_height, 6))
yolo_format_data.append(yolo_format)
# Save Ultralytics YOLO format data to file
output_path = Path(output_dir) / f"{mask_path.stem}.txt"
with open(output_path, "w") as file:
for item in yolo_format_data:
line = " ".join(map(str, item))
file.write(line + "\n")
LOGGER.info(f"Processed and stored at {output_path} imgsz = {img_height} x {img_width}")
def convert_dota_to_yolo_obb(dota_root_path: str):
"""
Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format.
The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the
associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory.
Args:
dota_root_path (str): The root directory path of the DOTA dataset.
Example:
```python
from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb("path/to/DOTA")
```
Notes:
The directory structure assumed for the DOTA dataset:
- DOTA
ββ images
β ββ train
β ββ val
ββ labels
ββ train_original
ββ val_original
After execution, the function will organize the labels into:
- DOTA
ββ labels
ββ train
ββ val
"""
dota_root_path = Path(dota_root_path)
# Class names to indices mapping
class_mapping = {
"plane": 0,
"ship": 1,
"storage-tank": 2,
"baseball-diamond": 3,
"tennis-court": 4,
"basketball-court": 5,
"ground-track-field": 6,
"harbor": 7,
"bridge": 8,
"large-vehicle": 9,
"small-vehicle": 10,
"helicopter": 11,
"roundabout": 12,
"soccer-ball-field": 13,
"swimming-pool": 14,
"container-crane": 15,
"airport": 16,
"helipad": 17,
}
def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir):
"""Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory."""
orig_label_path = orig_label_dir / f"{image_name}.txt"
save_path = save_dir / f"{image_name}.txt"
with orig_label_path.open("r") as f, save_path.open("w") as g:
lines = f.readlines()
for line in lines:
parts = line.strip().split()
if len(parts) < 9:
continue
class_name = parts[8]
class_idx = class_mapping[class_name]
coords = [float(p) for p in parts[:8]]
normalized_coords = [
coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8)
]
formatted_coords = [f"{coord:.6g}" for coord in normalized_coords]
g.write(f"{class_idx} {' '.join(formatted_coords)}\n")
for phase in ["train", "val"]:
image_dir = dota_root_path / "images" / phase
orig_label_dir = dota_root_path / "labels" / f"{phase}_original"
save_dir = dota_root_path / "labels" / phase
save_dir.mkdir(parents=True, exist_ok=True)
image_paths = list(image_dir.iterdir())
for image_path in TQDM(image_paths, desc=f"Processing {phase} images"):
if image_path.suffix != ".png":
continue
image_name_without_ext = image_path.stem
img = cv2.imread(str(image_path))
h, w = img.shape[:2]
convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir)
def min_index(arr1, arr2):
"""
Find a pair of indexes with the shortest distance between two arrays of 2D points.
Args:
arr1 (np.ndarray): A NumPy array of shape (N, 2) representing N 2D points.
arr2 (np.ndarray): A NumPy array of shape (M, 2) representing M 2D points.
Returns:
(tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively.
"""
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1)
return np.unravel_index(np.argmin(dis, axis=None), dis.shape)
def merge_multi_segment(segments):
"""
Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment.
This function connects these coordinates with a thin line to merge all segments into one.
Args:
segments (List[List]): Original segmentations in COCO's JSON file.
Each element is a list of coordinates, like [segmentation1, segmentation2,...].
Returns:
s (List[np.ndarray]): A list of connected segments represented as NumPy arrays.
"""
s = []
segments = [np.array(i).reshape(-1, 2) for i in segments]
idx_list = [[] for _ in range(len(segments))]
# Record the indexes with min distance between each segment
for i in range(1, len(segments)):
idx1, idx2 = min_index(segments[i - 1], segments[i])
idx_list[i - 1].append(idx1)
idx_list[i].append(idx2)
# Use two round to connect all the segments
for k in range(2):
# Forward connection
if k == 0:
for i, idx in enumerate(idx_list):
# Middle segments have two indexes, reverse the index of middle segments
if len(idx) == 2 and idx[0] > idx[1]:
idx = idx[::-1]
segments[i] = segments[i][::-1, :]
segments[i] = np.roll(segments[i], -idx[0], axis=0)
segments[i] = np.concatenate([segments[i], segments[i][:1]])
# Deal with the first segment and the last one
if i in {0, len(idx_list) - 1}:
s.append(segments[i])
else:
idx = [0, idx[1] - idx[0]]
s.append(segments[i][idx[0] : idx[1] + 1])
else:
for i in range(len(idx_list) - 1, -1, -1):
if i not in {0, len(idx_list) - 1}:
idx = idx_list[i]
nidx = abs(idx[1] - idx[0])
s.append(segments[i][nidx:])
return s
def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
"""
Converts existing object detection dataset (bounding boxes) to segmentation dataset or oriented bounding box (OBB)
in YOLO format. Generates segmentation data using SAM auto-annotator as needed.
Args:
im_dir (str | Path): Path to image directory to convert.
save_dir (str | Path): Path to save the generated labels, labels will be saved
into `labels-segment` in the same directory level of `im_dir` if save_dir is None. Default: None.
sam_model (str): Segmentation model to use for intermediate segmentation data; optional.
Notes:
The input directory structure assumed for dataset:
- im_dir
ββ 001.jpg
ββ ...
ββ NNN.jpg
- labels
ββ 001.txt
ββ ...
ββ NNN.txt
"""
from ultralytics import SAM
from ultralytics.data import YOLODataset
from ultralytics.utils import LOGGER
from ultralytics.utils.ops import xywh2xyxy
# NOTE: add placeholder to pass class index check
dataset = YOLODataset(im_dir, data=dict(names=list(range(1000))))
if len(dataset.labels[0]["segments"]) > 0: # if it's segment data
LOGGER.info("Segmentation labels detected, no need to generate new ones!")
return
LOGGER.info("Detection labels detected, generating segment labels by SAM model!")
sam_model = SAM(sam_model)
for label in TQDM(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"):
h, w = label["shape"]
boxes = label["bboxes"]
if len(boxes) == 0: # skip empty labels
continue
boxes[:, [0, 2]] *= w
boxes[:, [1, 3]] *= h
im = cv2.imread(label["im_file"])
sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False)
label["segments"] = sam_results[0].masks.xyn
save_dir = Path(save_dir) if save_dir else Path(im_dir).parent / "labels-segment"
save_dir.mkdir(parents=True, exist_ok=True)
for label in dataset.labels:
texts = []
lb_name = Path(label["im_file"]).with_suffix(".txt").name
txt_file = save_dir / lb_name
cls = label["cls"]
for i, s in enumerate(label["segments"]):
line = (int(cls[i]), *s.reshape(-1))
texts.append(("%g " * len(line)).rstrip() % line)
if texts:
with open(txt_file, "a") as f:
f.writelines(text + "\n" for text in texts)
LOGGER.info(f"Generated segment labels saved in {save_dir}")
def create_synthetic_coco_dataset():
"""
Creates a synthetic COCO dataset with random images based on filenames from label lists.
This function downloads COCO labels, reads image filenames from label list files,
creates synthetic images for train2017 and val2017 subsets, and organizes
them in the COCO dataset structure. It uses multithreading to generate images efficiently.
Examples:
>>> from ultralytics.data.converter import create_synthetic_coco_dataset
>>> create_synthetic_coco_dataset()
Notes:
- Requires internet connection to download label files.
- Generates random RGB images of varying sizes (480x480 to 640x640 pixels).
- Existing test2017 directory is removed as it's not needed.
- Reads image filenames from train2017.txt and val2017.txt files.
"""
def create_synthetic_image(image_file):
"""Generates synthetic images with random sizes and colors for dataset augmentation or testing purposes."""
if not image_file.exists():
size = (random.randint(480, 640), random.randint(480, 640))
Image.new(
"RGB",
size=size,
color=(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)),
).save(image_file)
# Download labels
dir = DATASETS_DIR / "coco"
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
label_zip = "coco2017labels-segments.zip"
download([url + label_zip], dir=dir.parent)
# Create synthetic images
shutil.rmtree(dir / "labels" / "test2017", ignore_errors=True) # Remove test2017 directory as not needed
with ThreadPoolExecutor(max_workers=NUM_THREADS) as executor:
for subset in ["train2017", "val2017"]:
subset_dir = dir / "images" / subset
subset_dir.mkdir(parents=True, exist_ok=True)
# Read image filenames from label list file
label_list_file = dir / f"{subset}.txt"
if label_list_file.exists():
with open(label_list_file) as f:
image_files = [dir / line.strip() for line in f]
# Submit all tasks
futures = [executor.submit(create_synthetic_image, image_file) for image_file in image_files]
for _ in TQDM(as_completed(futures), total=len(futures), desc=f"Generating images for {subset}"):
pass # The actual work is done in the background
else:
print(f"Warning: Labels file {label_list_file} does not exist. Skipping image creation for {subset}.")
print("Synthetic COCO dataset created successfully.")
|