File size: 123,168 Bytes
f6228f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 |
# Ultralytics YOLO 🚀, AGPL-3.0 license
import math
import random
from copy import deepcopy
from typing import Tuple, Union
import cv2
import numpy as np
import torch
from PIL import Image
from ultralytics.data.utils import polygons2masks, polygons2masks_overlap
from ultralytics.utils import LOGGER, colorstr
from ultralytics.utils.checks import check_version
from ultralytics.utils.instance import Instances
from ultralytics.utils.metrics import bbox_ioa
from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr
from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13
DEFAULT_MEAN = (0.0, 0.0, 0.0)
DEFAULT_STD = (1.0, 1.0, 1.0)
DEFAULT_CROP_FRACTION = 1.0
class BaseTransform:
"""
Base class for image transformations in the Ultralytics library.
This class serves as a foundation for implementing various image processing operations, designed to be
compatible with both classification and semantic segmentation tasks.
Methods:
apply_image: Applies image transformations to labels.
apply_instances: Applies transformations to object instances in labels.
apply_semantic: Applies semantic segmentation to an image.
__call__: Applies all label transformations to an image, instances, and semantic masks.
Examples:
>>> transform = BaseTransform()
>>> labels = {"image": np.array(...), "instances": [...], "semantic": np.array(...)}
>>> transformed_labels = transform(labels)
"""
def __init__(self) -> None:
"""
Initializes the BaseTransform object.
This constructor sets up the base transformation object, which can be extended for specific image
processing tasks. It is designed to be compatible with both classification and semantic segmentation.
Examples:
>>> transform = BaseTransform()
"""
pass
def apply_image(self, labels):
"""
Applies image transformations to labels.
This method is intended to be overridden by subclasses to implement specific image transformation
logic. In its base form, it returns the input labels unchanged.
Args:
labels (Any): The input labels to be transformed. The exact type and structure of labels may
vary depending on the specific implementation.
Returns:
(Any): The transformed labels. In the base implementation, this is identical to the input.
Examples:
>>> transform = BaseTransform()
>>> original_labels = [1, 2, 3]
>>> transformed_labels = transform.apply_image(original_labels)
>>> print(transformed_labels)
[1, 2, 3]
"""
pass
def apply_instances(self, labels):
"""
Applies transformations to object instances in labels.
This method is responsible for applying various transformations to object instances within the given
labels. It is designed to be overridden by subclasses to implement specific instance transformation
logic.
Args:
labels (Dict): A dictionary containing label information, including object instances.
Returns:
(Dict): The modified labels dictionary with transformed object instances.
Examples:
>>> transform = BaseTransform()
>>> labels = {"instances": Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))}
>>> transformed_labels = transform.apply_instances(labels)
"""
pass
def apply_semantic(self, labels):
"""
Applies semantic segmentation transformations to an image.
This method is intended to be overridden by subclasses to implement specific semantic segmentation
transformations. In its base form, it does not perform any operations.
Args:
labels (Any): The input labels or semantic segmentation mask to be transformed.
Returns:
(Any): The transformed semantic segmentation mask or labels.
Examples:
>>> transform = BaseTransform()
>>> semantic_mask = np.zeros((100, 100), dtype=np.uint8)
>>> transformed_mask = transform.apply_semantic(semantic_mask)
"""
pass
def __call__(self, labels):
"""
Applies all label transformations to an image, instances, and semantic masks.
This method orchestrates the application of various transformations defined in the BaseTransform class
to the input labels. It sequentially calls the apply_image and apply_instances methods to process the
image and object instances, respectively.
Args:
labels (Dict): A dictionary containing image data and annotations. Expected keys include 'img' for
the image data, and 'instances' for object instances.
Returns:
(Dict): The input labels dictionary with transformed image and instances.
Examples:
>>> transform = BaseTransform()
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": []}
>>> transformed_labels = transform(labels)
"""
self.apply_image(labels)
self.apply_instances(labels)
self.apply_semantic(labels)
class Compose:
"""
A class for composing multiple image transformations.
Attributes:
transforms (List[Callable]): A list of transformation functions to be applied sequentially.
Methods:
__call__: Applies a series of transformations to input data.
append: Appends a new transform to the existing list of transforms.
insert: Inserts a new transform at a specified index in the list of transforms.
__getitem__: Retrieves a specific transform or a set of transforms using indexing.
__setitem__: Sets a specific transform or a set of transforms using indexing.
tolist: Converts the list of transforms to a standard Python list.
Examples:
>>> transforms = [RandomFlip(), RandomPerspective(30)]
>>> compose = Compose(transforms)
>>> transformed_data = compose(data)
>>> compose.append(CenterCrop((224, 224)))
>>> compose.insert(0, RandomFlip())
"""
def __init__(self, transforms):
"""
Initializes the Compose object with a list of transforms.
Args:
transforms (List[Callable]): A list of callable transform objects to be applied sequentially.
Examples:
>>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip
>>> transforms = [RandomHSV(), RandomFlip()]
>>> compose = Compose(transforms)
"""
self.transforms = transforms if isinstance(transforms, list) else [transforms]
def __call__(self, data):
"""
Applies a series of transformations to input data. This method sequentially applies each transformation in the
Compose object's list of transforms to the input data.
Args:
data (Any): The input data to be transformed. This can be of any type, depending on the
transformations in the list.
Returns:
(Any): The transformed data after applying all transformations in sequence.
Examples:
>>> transforms = [Transform1(), Transform2(), Transform3()]
>>> compose = Compose(transforms)
>>> transformed_data = compose(input_data)
"""
for t in self.transforms:
data = t(data)
return data
def append(self, transform):
"""
Appends a new transform to the existing list of transforms.
Args:
transform (BaseTransform): The transformation to be added to the composition.
Examples:
>>> compose = Compose([RandomFlip(), RandomPerspective()])
>>> compose.append(RandomHSV())
"""
self.transforms.append(transform)
def insert(self, index, transform):
"""
Inserts a new transform at a specified index in the existing list of transforms.
Args:
index (int): The index at which to insert the new transform.
transform (BaseTransform): The transform object to be inserted.
Examples:
>>> compose = Compose([Transform1(), Transform2()])
>>> compose.insert(1, Transform3())
>>> len(compose.transforms)
3
"""
self.transforms.insert(index, transform)
def __getitem__(self, index: Union[list, int]) -> "Compose":
"""
Retrieves a specific transform or a set of transforms using indexing.
Args:
index (int | List[int]): Index or list of indices of the transforms to retrieve.
Returns:
(Compose): A new Compose object containing the selected transform(s).
Raises:
AssertionError: If the index is not of type int or list.
Examples:
>>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)]
>>> compose = Compose(transforms)
>>> single_transform = compose[1] # Returns a Compose object with only RandomPerspective
>>> multiple_transforms = compose[0:2] # Returns a Compose object with RandomFlip and RandomPerspective
"""
assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
index = [index] if isinstance(index, int) else index
return Compose([self.transforms[i] for i in index])
def __setitem__(self, index: Union[list, int], value: Union[list, int]) -> None:
"""
Sets one or more transforms in the composition using indexing.
Args:
index (int | List[int]): Index or list of indices to set transforms at.
value (Any | List[Any]): Transform or list of transforms to set at the specified index(es).
Raises:
AssertionError: If index type is invalid, value type doesn't match index type, or index is out of range.
Examples:
>>> compose = Compose([Transform1(), Transform2(), Transform3()])
>>> compose[1] = NewTransform() # Replace second transform
>>> compose[0:2] = [NewTransform1(), NewTransform2()] # Replace first two transforms
"""
assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
if isinstance(index, list):
assert isinstance(
value, list
), f"The indices should be the same type as values, but got {type(index)} and {type(value)}"
if isinstance(index, int):
index, value = [index], [value]
for i, v in zip(index, value):
assert i < len(self.transforms), f"list index {i} out of range {len(self.transforms)}."
self.transforms[i] = v
def tolist(self):
"""
Converts the list of transforms to a standard Python list.
Returns:
(List): A list containing all the transform objects in the Compose instance.
Examples:
>>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()]
>>> compose = Compose(transforms)
>>> transform_list = compose.tolist()
>>> print(len(transform_list))
3
"""
return self.transforms
def __repr__(self):
"""
Returns a string representation of the Compose object.
Returns:
(str): A string representation of the Compose object, including the list of transforms.
Examples:
>>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)]
>>> compose = Compose(transforms)
>>> print(compose)
Compose([
RandomFlip(),
RandomPerspective(degrees=10, translate=0.1, scale=0.1)
])
"""
return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})"
class BaseMixTransform:
"""
Base class for mix transformations like MixUp and Mosaic.
This class provides a foundation for implementing mix transformations on datasets. It handles the
probability-based application of transforms and manages the mixing of multiple images and labels.
Attributes:
dataset (Any): The dataset object containing images and labels.
pre_transform (Callable | None): Optional transform to apply before mixing.
p (float): Probability of applying the mix transformation.
Methods:
__call__: Applies the mix transformation to the input labels.
_mix_transform: Abstract method to be implemented by subclasses for specific mix operations.
get_indexes: Abstract method to get indexes of images to be mixed.
_update_label_text: Updates label text for mixed images.
Examples:
>>> class CustomMixTransform(BaseMixTransform):
... def _mix_transform(self, labels):
... # Implement custom mix logic here
... return labels
...
... def get_indexes(self):
... return [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
>>> dataset = YourDataset()
>>> transform = CustomMixTransform(dataset, p=0.5)
>>> mixed_labels = transform(original_labels)
"""
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
"""
Initializes the BaseMixTransform object for mix transformations like MixUp and Mosaic.
This class serves as a base for implementing mix transformations in image processing pipelines.
Args:
dataset (Any): The dataset object containing images and labels for mixing.
pre_transform (Callable | None): Optional transform to apply before mixing.
p (float): Probability of applying the mix transformation. Should be in the range [0.0, 1.0].
Examples:
>>> dataset = YOLODataset("path/to/data")
>>> pre_transform = Compose([RandomFlip(), RandomPerspective()])
>>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)
"""
self.dataset = dataset
self.pre_transform = pre_transform
self.p = p
def __call__(self, labels):
"""
Applies pre-processing transforms and mixup/mosaic transforms to labels data.
This method determines whether to apply the mix transform based on a probability factor. If applied, it
selects additional images, applies pre-transforms if specified, and then performs the mix transform.
Args:
labels (Dict): A dictionary containing label data for an image.
Returns:
(Dict): The transformed labels dictionary, which may include mixed data from other images.
Examples:
>>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5)
>>> result = transform({"image": img, "bboxes": boxes, "cls": classes})
"""
if random.uniform(0, 1) > self.p:
return labels
# Get index of one or three other images
indexes = self.get_indexes()
if isinstance(indexes, int):
indexes = [indexes]
# Get images information will be used for Mosaic or MixUp
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]
if self.pre_transform is not None:
for i, data in enumerate(mix_labels):
mix_labels[i] = self.pre_transform(data)
labels["mix_labels"] = mix_labels
# Update cls and texts
labels = self._update_label_text(labels)
# Mosaic or MixUp
labels = self._mix_transform(labels)
labels.pop("mix_labels", None)
return labels
def _mix_transform(self, labels):
"""
Applies MixUp or Mosaic augmentation to the label dictionary.
This method should be implemented by subclasses to perform specific mix transformations like MixUp or
Mosaic. It modifies the input label dictionary in-place with the augmented data.
Args:
labels (Dict): A dictionary containing image and label data. Expected to have a 'mix_labels' key
with a list of additional image and label data for mixing.
Returns:
(Dict): The modified labels dictionary with augmented data after applying the mix transform.
Examples:
>>> transform = BaseMixTransform(dataset)
>>> labels = {"image": img, "bboxes": boxes, "mix_labels": [{"image": img2, "bboxes": boxes2}]}
>>> augmented_labels = transform._mix_transform(labels)
"""
raise NotImplementedError
def get_indexes(self):
"""
Gets a list of shuffled indexes for mosaic augmentation.
Returns:
(List[int]): A list of shuffled indexes from the dataset.
Examples:
>>> transform = BaseMixTransform(dataset)
>>> indexes = transform.get_indexes()
>>> print(indexes) # [3, 18, 7, 2]
"""
raise NotImplementedError
def _update_label_text(self, labels):
"""
Updates label text and class IDs for mixed labels in image augmentation.
This method processes the 'texts' and 'cls' fields of the input labels dictionary and any mixed labels,
creating a unified set of text labels and updating class IDs accordingly.
Args:
labels (Dict): A dictionary containing label information, including 'texts' and 'cls' fields,
and optionally a 'mix_labels' field with additional label dictionaries.
Returns:
(Dict): The updated labels dictionary with unified text labels and updated class IDs.
Examples:
>>> labels = {
... "texts": [["cat"], ["dog"]],
... "cls": torch.tensor([[0], [1]]),
... "mix_labels": [{"texts": [["bird"], ["fish"]], "cls": torch.tensor([[0], [1]])}],
... }
>>> updated_labels = self._update_label_text(labels)
>>> print(updated_labels["texts"])
[['cat'], ['dog'], ['bird'], ['fish']]
>>> print(updated_labels["cls"])
tensor([[0],
[1]])
>>> print(updated_labels["mix_labels"][0]["cls"])
tensor([[2],
[3]])
"""
if "texts" not in labels:
return labels
mix_texts = sum([labels["texts"]] + [x["texts"] for x in labels["mix_labels"]], [])
mix_texts = list({tuple(x) for x in mix_texts})
text2id = {text: i for i, text in enumerate(mix_texts)}
for label in [labels] + labels["mix_labels"]:
for i, cls in enumerate(label["cls"].squeeze(-1).tolist()):
text = label["texts"][int(cls)]
label["cls"][i] = text2id[tuple(text)]
label["texts"] = mix_texts
return labels
class Mosaic(BaseMixTransform):
"""
Mosaic augmentation for image datasets.
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
The augmentation is applied to a dataset with a given probability.
Attributes:
dataset: The dataset on which the mosaic augmentation is applied.
imgsz (int): Image size (height and width) after mosaic pipeline of a single image.
p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.
n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).
border (Tuple[int, int]): Border size for width and height.
Methods:
get_indexes: Returns a list of random indexes from the dataset.
_mix_transform: Applies mixup transformation to the input image and labels.
_mosaic3: Creates a 1x3 image mosaic.
_mosaic4: Creates a 2x2 image mosaic.
_mosaic9: Creates a 3x3 image mosaic.
_update_labels: Updates labels with padding.
_cat_labels: Concatenates labels and clips mosaic border instances.
Examples:
>>> from ultralytics.data.augment import Mosaic
>>> dataset = YourDataset(...) # Your image dataset
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
>>> augmented_labels = mosaic_aug(original_labels)
"""
def __init__(self, dataset, imgsz=640, p=1.0, n=4):
"""
Initializes the Mosaic augmentation object.
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
The augmentation is applied to a dataset with a given probability.
Args:
dataset (Any): The dataset on which the mosaic augmentation is applied.
imgsz (int): Image size (height and width) after mosaic pipeline of a single image.
p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.
n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).
Examples:
>>> from ultralytics.data.augment import Mosaic
>>> dataset = YourDataset(...)
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
"""
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
assert n in {4, 9}, "grid must be equal to 4 or 9."
super().__init__(dataset=dataset, p=p)
self.imgsz = imgsz
self.border = (-imgsz // 2, -imgsz // 2) # width, height
self.n = n
def get_indexes(self, buffer=True):
"""
Returns a list of random indexes from the dataset for mosaic augmentation.
This method selects random image indexes either from a buffer or from the entire dataset, depending on
the 'buffer' parameter. It is used to choose images for creating mosaic augmentations.
Args:
buffer (bool): If True, selects images from the dataset buffer. If False, selects from the entire
dataset.
Returns:
(List[int]): A list of random image indexes. The length of the list is n-1, where n is the number
of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9).
Examples:
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
>>> indexes = mosaic.get_indexes()
>>> print(len(indexes)) # Output: 3
"""
if buffer: # select images from buffer
return random.choices(list(self.dataset.buffer), k=self.n - 1)
else: # select any images
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)]
def _mix_transform(self, labels):
"""
Applies mosaic augmentation to the input image and labels.
This method combines multiple images (3, 4, or 9) into a single mosaic image based on the 'n' attribute.
It ensures that rectangular annotations are not present and that there are other images available for
mosaic augmentation.
Args:
labels (Dict): A dictionary containing image data and annotations. Expected keys include:
- 'rect_shape': Should be None as rect and mosaic are mutually exclusive.
- 'mix_labels': A list of dictionaries containing data for other images to be used in the mosaic.
Returns:
(Dict): A dictionary containing the mosaic-augmented image and updated annotations.
Raises:
AssertionError: If 'rect_shape' is not None or if 'mix_labels' is empty.
Examples:
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
>>> augmented_data = mosaic._mix_transform(labels)
"""
assert labels.get("rect_shape", None) is None, "rect and mosaic are mutually exclusive."
assert len(labels.get("mix_labels", [])), "There are no other images for mosaic augment."
return (
self._mosaic3(labels) if self.n == 3 else self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels)
) # This code is modified for mosaic3 method.
def _mosaic3(self, labels):
"""
Creates a 1x3 image mosaic by combining three images.
This method arranges three images in a horizontal layout, with the main image in the center and two
additional images on either side. It's part of the Mosaic augmentation technique used in object detection.
Args:
labels (Dict): A dictionary containing image and label information for the main (center) image.
Must include 'img' key with the image array, and 'mix_labels' key with a list of two
dictionaries containing information for the side images.
Returns:
(Dict): A dictionary with the mosaic image and updated labels. Keys include:
- 'img' (np.ndarray): The mosaic image array with shape (H, W, C).
- Other keys from the input labels, updated to reflect the new image dimensions.
Examples:
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=3)
>>> labels = {
... "img": np.random.rand(480, 640, 3),
... "mix_labels": [{"img": np.random.rand(480, 640, 3)} for _ in range(2)],
... }
>>> result = mosaic._mosaic3(labels)
>>> print(result["img"].shape)
(640, 640, 3)
"""
mosaic_labels = []
s = self.imgsz
for i in range(3):
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1]
# Load image
img = labels_patch["img"]
h, w = labels_patch.pop("resized_shape")
# Place img in img3
if i == 0: # center
img3 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 3 tiles
h0, w0 = h, w
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
elif i == 1: # right
c = s + w0, s, s + w0 + w, s + h
elif i == 2: # left
c = s - w, s + h0 - h, s, s + h0
padw, padh = c[:2]
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
img3[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img3[ymin:ymax, xmin:xmax]
# hp, wp = h, w # height, width previous for next iteration
# Labels assuming imgsz*2 mosaic size
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1])
mosaic_labels.append(labels_patch)
final_labels = self._cat_labels(mosaic_labels)
final_labels["img"] = img3[-self.border[0] : self.border[0], -self.border[1] : self.border[1]]
return final_labels
def _mosaic4(self, labels):
"""
Creates a 2x2 image mosaic from four input images.
This method combines four images into a single mosaic image by placing them in a 2x2 grid. It also
updates the corresponding labels for each image in the mosaic.
Args:
labels (Dict): A dictionary containing image data and labels for the base image (index 0) and three
additional images (indices 1-3) in the 'mix_labels' key.
Returns:
(Dict): A dictionary containing the mosaic image and updated labels. The 'img' key contains the mosaic
image as a numpy array, and other keys contain the combined and adjusted labels for all four images.
Examples:
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
>>> labels = {
... "img": np.random.rand(480, 640, 3),
... "mix_labels": [{"img": np.random.rand(480, 640, 3)} for _ in range(3)],
... }
>>> result = mosaic._mosaic4(labels)
>>> assert result["img"].shape == (1280, 1280, 3)
"""
mosaic_labels = []
s = self.imgsz
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y
for i in range(4):
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1]
# Load image
img = labels_patch["img"]
h, w = labels_patch.pop("resized_shape")
# Place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b
labels_patch = self._update_labels(labels_patch, padw, padh)
mosaic_labels.append(labels_patch)
final_labels = self._cat_labels(mosaic_labels)
final_labels["img"] = img4
return final_labels
def _mosaic9(self, labels):
"""
Creates a 3x3 image mosaic from the input image and eight additional images.
This method combines nine images into a single mosaic image. The input image is placed at the center,
and eight additional images from the dataset are placed around it in a 3x3 grid pattern.
Args:
labels (Dict): A dictionary containing the input image and its associated labels. It should have
the following keys:
- 'img' (numpy.ndarray): The input image.
- 'resized_shape' (Tuple[int, int]): The shape of the resized image (height, width).
- 'mix_labels' (List[Dict]): A list of dictionaries containing information for the additional
eight images, each with the same structure as the input labels.
Returns:
(Dict): A dictionary containing the mosaic image and updated labels. It includes the following keys:
- 'img' (numpy.ndarray): The final mosaic image.
- Other keys from the input labels, updated to reflect the new mosaic arrangement.
Examples:
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=9)
>>> input_labels = dataset[0]
>>> mosaic_result = mosaic._mosaic9(input_labels)
>>> mosaic_image = mosaic_result["img"]
"""
mosaic_labels = []
s = self.imgsz
hp, wp = -1, -1 # height, width previous
for i in range(9):
labels_patch = labels if i == 0 else labels["mix_labels"][i - 1]
# Load image
img = labels_patch["img"]
h, w = labels_patch.pop("resized_shape")
# Place img in img9
if i == 0: # center
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
h0, w0 = h, w
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
elif i == 1: # top
c = s, s - h, s + w, s
elif i == 2: # top right
c = s + wp, s - h, s + wp + w, s
elif i == 3: # right
c = s + w0, s, s + w0 + w, s + h
elif i == 4: # bottom right
c = s + w0, s + hp, s + w0 + w, s + hp + h
elif i == 5: # bottom
c = s + w0 - w, s + h0, s + w0, s + h0 + h
elif i == 6: # bottom left
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
elif i == 7: # left
c = s - w, s + h0 - h, s, s + h0
elif i == 8: # top left
c = s - w, s + h0 - hp - h, s, s + h0 - hp
padw, padh = c[:2]
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
# Image
img9[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img9[ymin:ymax, xmin:xmax]
hp, wp = h, w # height, width previous for next iteration
# Labels assuming imgsz*2 mosaic size
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1])
mosaic_labels.append(labels_patch)
final_labels = self._cat_labels(mosaic_labels)
final_labels["img"] = img9[-self.border[0] : self.border[0], -self.border[1] : self.border[1]]
return final_labels
@staticmethod
def _update_labels(labels, padw, padh):
"""
Updates label coordinates with padding values.
This method adjusts the bounding box coordinates of object instances in the labels by adding padding
values. It also denormalizes the coordinates if they were previously normalized.
Args:
labels (Dict): A dictionary containing image and instance information.
padw (int): Padding width to be added to the x-coordinates.
padh (int): Padding height to be added to the y-coordinates.
Returns:
(Dict): Updated labels dictionary with adjusted instance coordinates.
Examples:
>>> labels = {"img": np.zeros((100, 100, 3)), "instances": Instances(...)}
>>> padw, padh = 50, 50
>>> updated_labels = Mosaic._update_labels(labels, padw, padh)
"""
nh, nw = labels["img"].shape[:2]
labels["instances"].convert_bbox(format="xyxy")
labels["instances"].denormalize(nw, nh)
labels["instances"].add_padding(padw, padh)
return labels
def _cat_labels(self, mosaic_labels):
"""
Concatenates and processes labels for mosaic augmentation.
This method combines labels from multiple images used in mosaic augmentation, clips instances to the
mosaic border, and removes zero-area boxes.
Args:
mosaic_labels (List[Dict]): A list of label dictionaries for each image in the mosaic.
Returns:
(Dict): A dictionary containing concatenated and processed labels for the mosaic image, including:
- im_file (str): File path of the first image in the mosaic.
- ori_shape (Tuple[int, int]): Original shape of the first image.
- resized_shape (Tuple[int, int]): Shape of the mosaic image (imgsz * 2, imgsz * 2).
- cls (np.ndarray): Concatenated class labels.
- instances (Instances): Concatenated instance annotations.
- mosaic_border (Tuple[int, int]): Mosaic border size.
- texts (List[str], optional): Text labels if present in the original labels.
Examples:
>>> mosaic = Mosaic(dataset, imgsz=640)
>>> mosaic_labels = [{"cls": np.array([0, 1]), "instances": Instances(...)} for _ in range(4)]
>>> result = mosaic._cat_labels(mosaic_labels)
>>> print(result.keys())
dict_keys(['im_file', 'ori_shape', 'resized_shape', 'cls', 'instances', 'mosaic_border'])
"""
if len(mosaic_labels) == 0:
return {}
cls = []
instances = []
imgsz = self.imgsz * 2 # mosaic imgsz
for labels in mosaic_labels:
cls.append(labels["cls"])
instances.append(labels["instances"])
# Final labels
final_labels = {
"im_file": mosaic_labels[0]["im_file"],
"ori_shape": mosaic_labels[0]["ori_shape"],
"resized_shape": (imgsz, imgsz),
"cls": np.concatenate(cls, 0),
"instances": Instances.concatenate(instances, axis=0),
"mosaic_border": self.border,
}
final_labels["instances"].clip(imgsz, imgsz)
good = final_labels["instances"].remove_zero_area_boxes()
final_labels["cls"] = final_labels["cls"][good]
if "texts" in mosaic_labels[0]:
final_labels["texts"] = mosaic_labels[0]["texts"]
return final_labels
class MixUp(BaseMixTransform):
"""
Applies MixUp augmentation to image datasets.
This class implements the MixUp augmentation technique as described in the paper "mixup: Beyond Empirical Risk
Minimization" (https://arxiv.org/abs/1710.09412). MixUp combines two images and their labels using a random weight.
Attributes:
dataset (Any): The dataset to which MixUp augmentation will be applied.
pre_transform (Callable | None): Optional transform to apply before MixUp.
p (float): Probability of applying MixUp augmentation.
Methods:
get_indexes: Returns a random index from the dataset.
_mix_transform: Applies MixUp augmentation to the input labels.
Examples:
>>> from ultralytics.data.augment import MixUp
>>> dataset = YourDataset(...) # Your image dataset
>>> mixup = MixUp(dataset, p=0.5)
>>> augmented_labels = mixup(original_labels)
"""
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
"""
Initializes the MixUp augmentation object.
MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel
values and labels. This implementation is designed for use with the Ultralytics YOLO framework.
Args:
dataset (Any): The dataset to which MixUp augmentation will be applied.
pre_transform (Callable | None): Optional transform to apply to images before MixUp.
p (float): Probability of applying MixUp augmentation to an image. Must be in the range [0, 1].
Examples:
>>> from ultralytics.data.dataset import YOLODataset
>>> dataset = YOLODataset("path/to/data.yaml")
>>> mixup = MixUp(dataset, pre_transform=None, p=0.5)
"""
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
def get_indexes(self):
"""
Get a random index from the dataset.
This method returns a single random index from the dataset, which is used to select an image for MixUp
augmentation.
Returns:
(int): A random integer index within the range of the dataset length.
Examples:
>>> mixup = MixUp(dataset)
>>> index = mixup.get_indexes()
>>> print(index)
42
"""
return random.randint(0, len(self.dataset) - 1)
def _mix_transform(self, labels):
"""
Applies MixUp augmentation to the input labels.
This method implements the MixUp augmentation technique as described in the paper
"mixup: Beyond Empirical Risk Minimization" (https://arxiv.org/abs/1710.09412).
Args:
labels (Dict): A dictionary containing the original image and label information.
Returns:
(Dict): A dictionary containing the mixed-up image and combined label information.
Examples:
>>> mixer = MixUp(dataset)
>>> mixed_labels = mixer._mix_transform(labels)
"""
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
labels2 = labels["mix_labels"][0]
labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8)
labels["instances"] = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0)
labels["cls"] = np.concatenate([labels["cls"], labels2["cls"]], 0)
return labels
class RandomPerspective:
"""
Implements random perspective and affine transformations on images and corresponding annotations.
This class applies random rotations, translations, scaling, shearing, and perspective transformations
to images and their associated bounding boxes, segments, and keypoints. It can be used as part of an
augmentation pipeline for object detection and instance segmentation tasks.
Attributes:
degrees (float): Maximum absolute degree range for random rotations.
translate (float): Maximum translation as a fraction of the image size.
scale (float): Scaling factor range, e.g., scale=0.1 means 0.9-1.1.
shear (float): Maximum shear angle in degrees.
perspective (float): Perspective distortion factor.
border (Tuple[int, int]): Mosaic border size as (x, y).
pre_transform (Callable | None): Optional transform to apply before the random perspective.
Methods:
affine_transform: Applies affine transformations to the input image.
apply_bboxes: Transforms bounding boxes using the affine matrix.
apply_segments: Transforms segments and generates new bounding boxes.
apply_keypoints: Transforms keypoints using the affine matrix.
__call__: Applies the random perspective transformation to images and annotations.
box_candidates: Filters transformed bounding boxes based on size and aspect ratio.
Examples:
>>> transform = RandomPerspective(degrees=10, translate=0.1, scale=0.1, shear=10)
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> labels = {"img": image, "cls": np.array([0, 1]), "instances": Instances(...)}
>>> result = transform(labels)
>>> transformed_image = result["img"]
>>> transformed_instances = result["instances"]
"""
def __init__(
self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None
):
"""
Initializes RandomPerspective object with transformation parameters.
This class implements random perspective and affine transformations on images and corresponding bounding boxes,
segments, and keypoints. Transformations include rotation, translation, scaling, and shearing.
Args:
degrees (float): Degree range for random rotations.
translate (float): Fraction of total width and height for random translation.
scale (float): Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%.
shear (float): Shear intensity (angle in degrees).
perspective (float): Perspective distortion factor.
border (Tuple[int, int]): Tuple specifying mosaic border (top/bottom, left/right).
pre_transform (Callable | None): Function/transform to apply to the image before starting the random
transformation.
Examples:
>>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)
>>> result = transform(labels) # Apply random perspective to labels
"""
self.degrees = degrees
self.translate = translate
self.scale = scale
self.shear = shear
self.perspective = perspective
self.border = border # mosaic border
self.pre_transform = pre_transform
def affine_transform(self, img, border):
"""
Applies a sequence of affine transformations centered around the image center.
This function performs a series of geometric transformations on the input image, including
translation, perspective change, rotation, scaling, and shearing. The transformations are
applied in a specific order to maintain consistency.
Args:
img (np.ndarray): Input image to be transformed.
border (Tuple[int, int]): Border dimensions for the transformed image.
Returns:
(Tuple[np.ndarray, np.ndarray, float]): A tuple containing:
- np.ndarray: Transformed image.
- np.ndarray: 3x3 transformation matrix.
- float: Scale factor applied during the transformation.
Examples:
>>> import numpy as np
>>> img = np.random.rand(100, 100, 3)
>>> border = (10, 10)
>>> transformed_img, matrix, scale = affine_transform(img, border)
"""
# Center
C = np.eye(3, dtype=np.float32)
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
# Perspective
P = np.eye(3, dtype=np.float32)
P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y)
P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x)
# Rotation and Scale
R = np.eye(3, dtype=np.float32)
a = random.uniform(-self.degrees, self.degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - self.scale, 1 + self.scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
S = np.eye(3, dtype=np.float32)
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg)
# Translation
T = np.eye(3, dtype=np.float32)
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels)
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels)
# Combined rotation matrix
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
# Affine image
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
if self.perspective:
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
else: # affine
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
return img, M, s
def apply_bboxes(self, bboxes, M):
"""
Apply affine transformation to bounding boxes.
This function applies an affine transformation to a set of bounding boxes using the provided
transformation matrix.
Args:
bboxes (torch.Tensor): Bounding boxes in xyxy format with shape (N, 4), where N is the number
of bounding boxes.
M (torch.Tensor): Affine transformation matrix with shape (3, 3).
Returns:
(torch.Tensor): Transformed bounding boxes in xyxy format with shape (N, 4).
Examples:
>>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]])
>>> M = torch.eye(3)
>>> transformed_bboxes = apply_bboxes(bboxes, M)
"""
n = len(bboxes)
if n == 0:
return bboxes
xy = np.ones((n * 4, 3), dtype=bboxes.dtype)
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = xy @ M.T # transform
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
# Create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T
def apply_segments(self, segments, M):
"""
Apply affine transformations to segments and generate new bounding boxes.
This function applies affine transformations to input segments and generates new bounding boxes based on
the transformed segments. It clips the transformed segments to fit within the new bounding boxes.
Args:
segments (np.ndarray): Input segments with shape (N, M, 2), where N is the number of segments and M is the
number of points in each segment.
M (np.ndarray): Affine transformation matrix with shape (3, 3).
Returns:
(Tuple[np.ndarray, np.ndarray]): A tuple containing:
- New bounding boxes with shape (N, 4) in xyxy format.
- Transformed and clipped segments with shape (N, M, 2).
Examples:
>>> segments = np.random.rand(10, 500, 2) # 10 segments with 500 points each
>>> M = np.eye(3) # Identity transformation matrix
>>> new_bboxes, new_segments = apply_segments(segments, M)
"""
n, num = segments.shape[:2]
if n == 0:
return [], segments
xy = np.ones((n * num, 3), dtype=segments.dtype)
segments = segments.reshape(-1, 2)
xy[:, :2] = segments
xy = xy @ M.T # transform
xy = xy[:, :2] / xy[:, 2:3]
segments = xy.reshape(n, -1, 2)
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3])
segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4])
return bboxes, segments
def apply_keypoints(self, keypoints, M):
"""
Applies affine transformation to keypoints.
This method transforms the input keypoints using the provided affine transformation matrix. It handles
perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image
boundaries after transformation.
Args:
keypoints (np.ndarray): Array of keypoints with shape (N, 17, 3), where N is the number of instances,
17 is the number of keypoints per instance, and 3 represents (x, y, visibility).
M (np.ndarray): 3x3 affine transformation matrix.
Returns:
(np.ndarray): Transformed keypoints array with the same shape as input (N, 17, 3).
Examples:
>>> random_perspective = RandomPerspective()
>>> keypoints = np.random.rand(5, 17, 3) # 5 instances, 17 keypoints each
>>> M = np.eye(3) # Identity transformation
>>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M)
"""
n, nkpt = keypoints.shape[:2]
if n == 0:
return keypoints
xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype)
visible = keypoints[..., 2].reshape(n * nkpt, 1)
xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2)
xy = xy @ M.T # transform
xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine
out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1])
visible[out_mask] = 0
return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3)
def __call__(self, labels):
"""
Applies random perspective and affine transformations to an image and its associated labels.
This method performs a series of transformations including rotation, translation, scaling, shearing,
and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments,
and keypoints accordingly.
Args:
labels (Dict): A dictionary containing image data and annotations.
Must include:
'img' (ndarray): The input image.
'cls' (ndarray): Class labels.
'instances' (Instances): Object instances with bounding boxes, segments, and keypoints.
May include:
'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation.
Returns:
(Dict): Transformed labels dictionary containing:
- 'img' (np.ndarray): The transformed image.
- 'cls' (np.ndarray): Updated class labels.
- 'instances' (Instances): Updated object instances.
- 'resized_shape' (Tuple[int, int]): New image shape after transformation.
Examples:
>>> transform = RandomPerspective()
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> labels = {
... "img": image,
... "cls": np.array([0, 1, 2]),
... "instances": Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]])),
... }
>>> result = transform(labels)
>>> assert result["img"].shape[:2] == result["resized_shape"]
"""
if self.pre_transform and "mosaic_border" not in labels:
labels = self.pre_transform(labels)
labels.pop("ratio_pad", None) # do not need ratio pad
img = labels["img"]
cls = labels["cls"]
instances = labels.pop("instances")
# Make sure the coord formats are right
instances.convert_bbox(format="xyxy")
instances.denormalize(*img.shape[:2][::-1])
border = labels.pop("mosaic_border", self.border)
self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h
# M is affine matrix
# Scale for func:`box_candidates`
img, M, scale = self.affine_transform(img, border)
bboxes = self.apply_bboxes(instances.bboxes, M)
segments = instances.segments
keypoints = instances.keypoints
# Update bboxes if there are segments.
if len(segments):
bboxes, segments = self.apply_segments(segments, M)
if keypoints is not None:
keypoints = self.apply_keypoints(keypoints, M)
new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False)
# Clip
new_instances.clip(*self.size)
# Filter instances
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True)
# Make the bboxes have the same scale with new_bboxes
i = self.box_candidates(
box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10
)
labels["instances"] = new_instances[i]
labels["cls"] = cls[i]
labels["img"] = img
labels["resized_shape"] = img.shape[:2]
return labels
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
"""
Compute candidate boxes for further processing based on size and aspect ratio criteria.
This method compares boxes before and after augmentation to determine if they meet specified
thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have
been overly distorted or reduced by the augmentation process.
Args:
box1 (numpy.ndarray): Original boxes before augmentation, shape (4, N) where n is the
number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates.
box2 (numpy.ndarray): Augmented boxes after transformation, shape (4, N). Format is
[x1, y1, x2, y2] in absolute coordinates.
wh_thr (float): Width and height threshold in pixels. Boxes smaller than this in either
dimension are rejected.
ar_thr (float): Aspect ratio threshold. Boxes with an aspect ratio greater than this
value are rejected.
area_thr (float): Area ratio threshold. Boxes with an area ratio (new/old) less than
this value are rejected.
eps (float): Small epsilon value to prevent division by zero.
Returns:
(numpy.ndarray): Boolean array of shape (n,) indicating which boxes are candidates.
True values correspond to boxes that meet all criteria.
Examples:
>>> random_perspective = RandomPerspective()
>>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T
>>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T
>>> candidates = random_perspective.box_candidates(box1, box2)
>>> print(candidates)
[True True]
"""
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
class RandomHSV:
"""
Randomly adjusts the Hue, Saturation, and Value (HSV) channels of an image.
This class applies random HSV augmentation to images within predefined limits set by hgain, sgain, and vgain.
Attributes:
hgain (float): Maximum variation for hue. Range is typically [0, 1].
sgain (float): Maximum variation for saturation. Range is typically [0, 1].
vgain (float): Maximum variation for value. Range is typically [0, 1].
Methods:
__call__: Applies random HSV augmentation to an image.
Examples:
>>> import numpy as np
>>> from ultralytics.data.augment import RandomHSV
>>> augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
>>> labels = {"img": image}
>>> augmented_labels = augmenter(labels)
>>> augmented_image = augmented_labels["img"]
"""
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
"""
Initializes the RandomHSV object for random HSV (Hue, Saturation, Value) augmentation.
This class applies random adjustments to the HSV channels of an image within specified limits.
Args:
hgain (float): Maximum variation for hue. Should be in the range [0, 1].
sgain (float): Maximum variation for saturation. Should be in the range [0, 1].
vgain (float): Maximum variation for value. Should be in the range [0, 1].
Examples:
>>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> augmented_image = hsv_aug(image)
"""
self.hgain = hgain
self.sgain = sgain
self.vgain = vgain
def __call__(self, labels):
"""
Applies random HSV augmentation to an image within predefined limits.
This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels.
The adjustments are made within the limits set by hgain, sgain, and vgain during initialization.
Args:
labels (Dict): A dictionary containing image data and metadata. Must include an 'img' key with
the image as a numpy array.
Returns:
(None): The function modifies the input 'labels' dictionary in-place, updating the 'img' key
with the HSV-augmented image.
Examples:
>>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> labels = {"img": np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)}
>>> hsv_augmenter(labels)
>>> augmented_img = labels["img"]
"""
img = labels["img"]
if self.hgain or self.sgain or self.vgain:
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8
x = np.arange(0, 256, dtype=r.dtype)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
return labels
class RandomFlip:
"""
Applies a random horizontal or vertical flip to an image with a given probability.
This class performs random image flipping and updates corresponding instance annotations such as
bounding boxes and keypoints.
Attributes:
p (float): Probability of applying the flip. Must be between 0 and 1.
direction (str): Direction of flip, either 'horizontal' or 'vertical'.
flip_idx (array-like): Index mapping for flipping keypoints, if applicable.
Methods:
__call__: Applies the random flip transformation to an image and its annotations.
Examples:
>>> transform = RandomFlip(p=0.5, direction="horizontal")
>>> result = transform({"img": image, "instances": instances})
>>> flipped_image = result["img"]
>>> flipped_instances = result["instances"]
"""
def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None:
"""
Initializes the RandomFlip class with probability and direction.
This class applies a random horizontal or vertical flip to an image with a given probability.
It also updates any instances (bounding boxes, keypoints, etc.) accordingly.
Args:
p (float): The probability of applying the flip. Must be between 0 and 1.
direction (str): The direction to apply the flip. Must be 'horizontal' or 'vertical'.
flip_idx (List[int] | None): Index mapping for flipping keypoints, if any.
Raises:
AssertionError: If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1.
Examples:
>>> flip = RandomFlip(p=0.5, direction="horizontal")
>>> flip = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4])
"""
assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}"
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
self.p = p
self.direction = direction
self.flip_idx = flip_idx
def __call__(self, labels):
"""
Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.
This method randomly flips the input image either horizontally or vertically based on the initialized
probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to
match the flipped image.
Args:
labels (Dict): A dictionary containing the following keys:
'img' (numpy.ndarray): The image to be flipped.
'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and
optionally keypoints.
Returns:
(Dict): The same dictionary with the flipped image and updated instances:
'img' (numpy.ndarray): The flipped image.
'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image.
Examples:
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": Instances(...)}
>>> random_flip = RandomFlip(p=0.5, direction="horizontal")
>>> flipped_labels = random_flip(labels)
"""
img = labels["img"]
instances = labels.pop("instances")
instances.convert_bbox(format="xywh")
h, w = img.shape[:2]
h = 1 if instances.normalized else h
w = 1 if instances.normalized else w
# Flip up-down
if self.direction == "vertical" and random.random() < self.p:
img = np.flipud(img)
instances.flipud(h)
if self.direction == "horizontal" and random.random() < self.p:
img = np.fliplr(img)
instances.fliplr(w)
# For keypoints
if self.flip_idx is not None and instances.keypoints is not None:
instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :])
labels["img"] = np.ascontiguousarray(img)
labels["instances"] = instances
return labels
class LetterBox:
"""
Resize image and padding for detection, instance segmentation, pose.
This class resizes and pads images to a specified shape while preserving aspect ratio. It also updates
corresponding labels and bounding boxes.
Attributes:
new_shape (tuple): Target shape (height, width) for resizing.
auto (bool): Whether to use minimum rectangle.
scaleFill (bool): Whether to stretch the image to new_shape.
scaleup (bool): Whether to allow scaling up. If False, only scale down.
stride (int): Stride for rounding padding.
center (bool): Whether to center the image or align to top-left.
Methods:
__call__: Resize and pad image, update labels and bounding boxes.
Examples:
>>> transform = LetterBox(new_shape=(640, 640))
>>> result = transform(labels)
>>> resized_img = result["img"]
>>> updated_instances = result["instances"]
"""
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):
"""
Initialize LetterBox object for resizing and padding images.
This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation
tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing.
Args:
new_shape (Tuple[int, int]): Target size (height, width) for the resized image.
auto (bool): If True, use minimum rectangle to resize. If False, use new_shape directly.
scaleFill (bool): If True, stretch the image to new_shape without padding.
scaleup (bool): If True, allow scaling up. If False, only scale down.
center (bool): If True, center the placed image. If False, place image in top-left corner.
stride (int): Stride of the model (e.g., 32 for YOLOv5).
Attributes:
new_shape (Tuple[int, int]): Target size for the resized image.
auto (bool): Flag for using minimum rectangle resizing.
scaleFill (bool): Flag for stretching image without padding.
scaleup (bool): Flag for allowing upscaling.
stride (int): Stride value for ensuring image size is divisible by stride.
Examples:
>>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32)
>>> resized_img = letterbox(original_img)
"""
self.new_shape = new_shape
self.auto = auto
self.scaleFill = scaleFill
self.scaleup = scaleup
self.stride = stride
self.center = center # Put the image in the middle or top-left
def __call__(self, labels=None, image=None):
"""
Resizes and pads an image for object detection, instance segmentation, or pose estimation tasks.
This method applies letterboxing to the input image, which involves resizing the image while maintaining its
aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly.
Args:
labels (Dict | None): A dictionary containing image data and associated labels, or empty dict if None.
image (np.ndarray | None): The input image as a numpy array. If None, the image is taken from 'labels'.
Returns:
(Dict | Tuple): If 'labels' is provided, returns an updated dictionary with the resized and padded image,
updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized
and padded image, and a tuple of (ratio, (left_pad, top_pad)).
Examples:
>>> letterbox = LetterBox(new_shape=(640, 640))
>>> result = letterbox(labels={"img": np.zeros((480, 640, 3)), "instances": Instances(...)})
>>> resized_img = result["img"]
>>> updated_instances = result["instances"]
"""
if labels is None:
labels = {}
img = labels.get("img") if image is None else image
shape = img.shape[:2] # current shape [height, width]
new_shape = labels.pop("rect_shape", self.new_shape)
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not self.scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if self.auto: # minimum rectangle
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding
elif self.scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
if self.center:
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
) # add border
if labels.get("ratio_pad"):
labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation
if len(labels):
labels = self._update_labels(labels, ratio, dw, dh)
labels["img"] = img
labels["resized_shape"] = new_shape
return labels
else:
return img
def _update_labels(self, labels, ratio, padw, padh):
"""
Updates labels after applying letterboxing to an image.
This method modifies the bounding box coordinates of instances in the labels
to account for resizing and padding applied during letterboxing.
Args:
labels (Dict): A dictionary containing image labels and instances.
ratio (Tuple[float, float]): Scaling ratios (width, height) applied to the image.
padw (float): Padding width added to the image.
padh (float): Padding height added to the image.
Returns:
(Dict): Updated labels dictionary with modified instance coordinates.
Examples:
>>> letterbox = LetterBox(new_shape=(640, 640))
>>> labels = {"instances": Instances(...)}
>>> ratio = (0.5, 0.5)
>>> padw, padh = 10, 20
>>> updated_labels = letterbox._update_labels(labels, ratio, padw, padh)
"""
labels["instances"].convert_bbox(format="xyxy")
labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
labels["instances"].scale(*ratio)
labels["instances"].add_padding(padw, padh)
return labels
class CopyPaste(BaseMixTransform):
"""
CopyPaste class for applying Copy-Paste augmentation to image datasets.
This class implements the Copy-Paste augmentation technique as described in the paper "Simple Copy-Paste is a Strong
Data Augmentation Method for Instance Segmentation" (https://arxiv.org/abs/2012.07177). It combines objects from
different images to create new training samples.
Attributes:
dataset (Any): The dataset to which Copy-Paste augmentation will be applied.
pre_transform (Callable | None): Optional transform to apply before Copy-Paste.
p (float): Probability of applying Copy-Paste augmentation.
Methods:
get_indexes: Returns a random index from the dataset.
_mix_transform: Applies Copy-Paste augmentation to the input labels.
__call__: Applies the Copy-Paste transformation to images and annotations.
Examples:
>>> from ultralytics.data.augment import CopyPaste
>>> dataset = YourDataset(...) # Your image dataset
>>> copypaste = CopyPaste(dataset, p=0.5)
>>> augmented_labels = copypaste(original_labels)
"""
def __init__(self, dataset=None, pre_transform=None, p=0.5, mode="flip") -> None:
"""Initializes CopyPaste object with dataset, pre_transform, and probability of applying MixUp."""
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
assert mode in {"flip", "mixup"}, f"Expected `mode` to be `flip` or `mixup`, but got {mode}."
self.mode = mode
def get_indexes(self):
"""Returns a list of random indexes from the dataset for CopyPaste augmentation."""
return random.randint(0, len(self.dataset) - 1)
def _mix_transform(self, labels):
"""Applies Copy-Paste augmentation to combine objects from another image into the current image."""
labels2 = labels["mix_labels"][0]
return self._transform(labels, labels2)
def __call__(self, labels):
"""Applies Copy-Paste augmentation to an image and its labels."""
if len(labels["instances"].segments) == 0 or self.p == 0:
return labels
if self.mode == "flip":
return self._transform(labels)
# Get index of one or three other images
indexes = self.get_indexes()
if isinstance(indexes, int):
indexes = [indexes]
# Get images information will be used for Mosaic or MixUp
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]
if self.pre_transform is not None:
for i, data in enumerate(mix_labels):
mix_labels[i] = self.pre_transform(data)
labels["mix_labels"] = mix_labels
# Update cls and texts
labels = self._update_label_text(labels)
# Mosaic or MixUp
labels = self._mix_transform(labels)
labels.pop("mix_labels", None)
return labels
def _transform(self, labels1, labels2={}):
"""Applies Copy-Paste augmentation to combine objects from another image into the current image."""
im = labels1["img"]
cls = labels1["cls"]
h, w = im.shape[:2]
instances = labels1.pop("instances")
instances.convert_bbox(format="xyxy")
instances.denormalize(w, h)
im_new = np.zeros(im.shape, np.uint8)
instances2 = labels2.pop("instances", None)
if instances2 is None:
instances2 = deepcopy(instances)
instances2.fliplr(w)
ioa = bbox_ioa(instances2.bboxes, instances.bboxes) # intersection over area, (N, M)
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
n = len(indexes)
sorted_idx = np.argsort(ioa.max(1)[indexes])
indexes = indexes[sorted_idx]
for j in indexes[: round(self.p * n)]:
cls = np.concatenate((cls, labels2.get("cls", cls)[[j]]), axis=0)
instances = Instances.concatenate((instances, instances2[[j]]), axis=0)
cv2.drawContours(im_new, instances2.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)
result = labels2.get("img", cv2.flip(im, 1)) # augment segments
i = im_new.astype(bool)
im[i] = result[i]
labels1["img"] = im
labels1["cls"] = cls
labels1["instances"] = instances
return labels1
class Albumentations:
"""
Albumentations transformations for image augmentation.
This class applies various image transformations using the Albumentations library. It includes operations such as
Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization (CLAHE), random changes
in brightness and contrast, RandomGamma, and image quality reduction through compression.
Attributes:
p (float): Probability of applying the transformations.
transform (albumentations.Compose): Composed Albumentations transforms.
contains_spatial (bool): Indicates if the transforms include spatial operations.
Methods:
__call__: Applies the Albumentations transformations to the input labels.
Examples:
>>> transform = Albumentations(p=0.5)
>>> augmented_labels = transform(labels)
Notes:
- The Albumentations package must be installed to use this class.
- If the package is not installed or an error occurs during initialization, the transform will be set to None.
- Spatial transforms are handled differently and require special processing for bounding boxes.
"""
def __init__(self, p=1.0):
"""
Initialize the Albumentations transform object for YOLO bbox formatted parameters.
This class applies various image augmentations using the Albumentations library, including Blur, Median Blur,
conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and
contrast, RandomGamma, and image quality reduction through compression.
Args:
p (float): Probability of applying the augmentations. Must be between 0 and 1.
Attributes:
p (float): Probability of applying the augmentations.
transform (albumentations.Compose): Composed Albumentations transforms.
contains_spatial (bool): Indicates if the transforms include spatial transformations.
Raises:
ImportError: If the Albumentations package is not installed.
Exception: For any other errors during initialization.
Examples:
>>> transform = Albumentations(p=0.5)
>>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)
>>> augmented_image = augmented["image"]
>>> augmented_bboxes = augmented["bboxes"]
Notes:
- Requires Albumentations version 1.0.3 or higher.
- Spatial transforms are handled differently to ensure bbox compatibility.
- Some transforms are applied with very low probability (0.01) by default.
"""
self.p = p
self.transform = None
prefix = colorstr("albumentations: ")
try:
import albumentations as A
check_version(A.__version__, "1.0.3", hard=True) # version requirement
# List of possible spatial transforms
spatial_transforms = {
"Affine",
"BBoxSafeRandomCrop",
"CenterCrop",
"CoarseDropout",
"Crop",
"CropAndPad",
"CropNonEmptyMaskIfExists",
"D4",
"ElasticTransform",
"Flip",
"GridDistortion",
"GridDropout",
"HorizontalFlip",
"Lambda",
"LongestMaxSize",
"MaskDropout",
"MixUp",
"Morphological",
"NoOp",
"OpticalDistortion",
"PadIfNeeded",
"Perspective",
"PiecewiseAffine",
"PixelDropout",
"RandomCrop",
"RandomCropFromBorders",
"RandomGridShuffle",
"RandomResizedCrop",
"RandomRotate90",
"RandomScale",
"RandomSizedBBoxSafeCrop",
"RandomSizedCrop",
"Resize",
"Rotate",
"SafeRotate",
"ShiftScaleRotate",
"SmallestMaxSize",
"Transpose",
"VerticalFlip",
"XYMasking",
} # from https://albumentations.ai/docs/getting_started/transforms_and_targets/#spatial-level-transforms
# Transforms
T = [
A.Blur(p=0.01),
A.MedianBlur(p=0.01),
A.ToGray(p=0.01),
A.CLAHE(p=0.01),
A.RandomBrightnessContrast(p=0.0),
A.RandomGamma(p=0.0),
A.ImageCompression(quality_lower=75, p=0.0),
]
# Compose transforms
self.contains_spatial = any(transform.__class__.__name__ in spatial_transforms for transform in T)
self.transform = (
A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
if self.contains_spatial
else A.Compose(T)
)
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
except ImportError: # package not installed, skip
pass
except Exception as e:
LOGGER.info(f"{prefix}{e}")
def __call__(self, labels):
"""
Applies Albumentations transformations to input labels.
This method applies a series of image augmentations using the Albumentations library. It can perform both
spatial and non-spatial transformations on the input image and its corresponding labels.
Args:
labels (Dict): A dictionary containing image data and annotations. Expected keys are:
- 'img': numpy.ndarray representing the image
- 'cls': numpy.ndarray of class labels
- 'instances': object containing bounding boxes and other instance information
Returns:
(Dict): The input dictionary with augmented image and updated annotations.
Examples:
>>> transform = Albumentations(p=0.5)
>>> labels = {
... "img": np.random.rand(640, 640, 3),
... "cls": np.array([0, 1]),
... "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]])),
... }
>>> augmented = transform(labels)
>>> assert augmented["img"].shape == (640, 640, 3)
Notes:
- The method applies transformations with probability self.p.
- Spatial transforms update bounding boxes, while non-spatial transforms only modify the image.
- Requires the Albumentations library to be installed.
"""
if self.transform is None or random.random() > self.p:
return labels
if self.contains_spatial:
cls = labels["cls"]
if len(cls):
im = labels["img"]
labels["instances"].convert_bbox("xywh")
labels["instances"].normalize(*im.shape[:2][::-1])
bboxes = labels["instances"].bboxes
# TODO: add supports of segments and keypoints
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed
if len(new["class_labels"]) > 0: # skip update if no bbox in new im
labels["img"] = new["image"]
labels["cls"] = np.array(new["class_labels"])
bboxes = np.array(new["bboxes"], dtype=np.float32)
labels["instances"].update(bboxes=bboxes)
else:
labels["img"] = self.transform(image=labels["img"])["image"] # transformed
return labels
class Format:
"""
A class for formatting image annotations for object detection, instance segmentation, and pose estimation tasks.
This class standardizes image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader.
Attributes:
bbox_format (str): Format for bounding boxes. Options are 'xywh' or 'xyxy'.
normalize (bool): Whether to normalize bounding boxes.
return_mask (bool): Whether to return instance masks for segmentation.
return_keypoint (bool): Whether to return keypoints for pose estimation.
return_obb (bool): Whether to return oriented bounding boxes.
mask_ratio (int): Downsample ratio for masks.
mask_overlap (bool): Whether to overlap masks.
batch_idx (bool): Whether to keep batch indexes.
bgr (float): The probability to return BGR images.
Methods:
__call__: Formats labels dictionary with image, classes, bounding boxes, and optionally masks and keypoints.
_format_img: Converts image from Numpy array to PyTorch tensor.
_format_segments: Converts polygon points to bitmap masks.
Examples:
>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
>>> formatted_labels = formatter(labels)
>>> img = formatted_labels["img"]
>>> bboxes = formatted_labels["bboxes"]
>>> masks = formatted_labels["masks"]
"""
def __init__(
self,
bbox_format="xywh",
normalize=True,
return_mask=False,
return_keypoint=False,
return_obb=False,
mask_ratio=4,
mask_overlap=True,
batch_idx=True,
bgr=0.0,
):
"""
Initializes the Format class with given parameters for image and instance annotation formatting.
This class standardizes image and instance annotations for object detection, instance segmentation, and pose
estimation tasks, preparing them for use in PyTorch DataLoader's `collate_fn`.
Args:
bbox_format (str): Format for bounding boxes. Options are 'xywh', 'xyxy', etc.
normalize (bool): Whether to normalize bounding boxes to [0,1].
return_mask (bool): If True, returns instance masks for segmentation tasks.
return_keypoint (bool): If True, returns keypoints for pose estimation tasks.
return_obb (bool): If True, returns oriented bounding boxes.
mask_ratio (int): Downsample ratio for masks.
mask_overlap (bool): If True, allows mask overlap.
batch_idx (bool): If True, keeps batch indexes.
bgr (float): Probability of returning BGR images instead of RGB.
Attributes:
bbox_format (str): Format for bounding boxes.
normalize (bool): Whether bounding boxes are normalized.
return_mask (bool): Whether to return instance masks.
return_keypoint (bool): Whether to return keypoints.
return_obb (bool): Whether to return oriented bounding boxes.
mask_ratio (int): Downsample ratio for masks.
mask_overlap (bool): Whether masks can overlap.
batch_idx (bool): Whether to keep batch indexes.
bgr (float): The probability to return BGR images.
Examples:
>>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False)
>>> print(format.bbox_format)
xyxy
"""
self.bbox_format = bbox_format
self.normalize = normalize
self.return_mask = return_mask # set False when training detection only
self.return_keypoint = return_keypoint
self.return_obb = return_obb
self.mask_ratio = mask_ratio
self.mask_overlap = mask_overlap
self.batch_idx = batch_idx # keep the batch indexes
self.bgr = bgr
def __call__(self, labels):
"""
Formats image annotations for object detection, instance segmentation, and pose estimation tasks.
This method standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch
DataLoader. It processes the input labels dictionary, converting annotations to the specified format and
applying normalization if required.
Args:
labels (Dict): A dictionary containing image and annotation data with the following keys:
- 'img': The input image as a numpy array.
- 'cls': Class labels for instances.
- 'instances': An Instances object containing bounding boxes, segments, and keypoints.
Returns:
(Dict): A dictionary with formatted data, including:
- 'img': Formatted image tensor.
- 'cls': Class labels tensor.
- 'bboxes': Bounding boxes tensor in the specified format.
- 'masks': Instance masks tensor (if return_mask is True).
- 'keypoints': Keypoints tensor (if return_keypoint is True).
- 'batch_idx': Batch index tensor (if batch_idx is True).
Examples:
>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
>>> labels = {"img": np.random.rand(640, 640, 3), "cls": np.array([0, 1]), "instances": Instances(...)}
>>> formatted_labels = formatter(labels)
>>> print(formatted_labels.keys())
"""
img = labels.pop("img")
h, w = img.shape[:2]
cls = labels.pop("cls")
instances = labels.pop("instances")
instances.convert_bbox(format=self.bbox_format)
instances.denormalize(w, h)
nl = len(instances)
if self.return_mask:
if nl:
masks, instances, cls = self._format_segments(instances, cls, w, h)
masks = torch.from_numpy(masks)
else:
masks = torch.zeros(
1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio
)
labels["masks"] = masks
labels["img"] = self._format_img(img)
labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl)
labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
if self.return_keypoint:
labels["keypoints"] = torch.from_numpy(instances.keypoints)
if self.normalize:
labels["keypoints"][..., 0] /= w
labels["keypoints"][..., 1] /= h
if self.return_obb:
labels["bboxes"] = (
xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5))
)
# NOTE: need to normalize obb in xywhr format for width-height consistency
if self.normalize:
labels["bboxes"][:, [0, 2]] /= w
labels["bboxes"][:, [1, 3]] /= h
# Then we can use collate_fn
if self.batch_idx:
labels["batch_idx"] = torch.zeros(nl)
return labels
def _format_img(self, img):
"""
Formats an image for YOLO from a Numpy array to a PyTorch tensor.
This function performs the following operations:
1. Ensures the image has 3 dimensions (adds a channel dimension if needed).
2. Transposes the image from HWC to CHW format.
3. Optionally flips the color channels from RGB to BGR.
4. Converts the image to a contiguous array.
5. Converts the Numpy array to a PyTorch tensor.
Args:
img (np.ndarray): Input image as a Numpy array with shape (H, W, C) or (H, W).
Returns:
(torch.Tensor): Formatted image as a PyTorch tensor with shape (C, H, W).
Examples:
>>> import numpy as np
>>> img = np.random.rand(100, 100, 3)
>>> formatted_img = self._format_img(img)
>>> print(formatted_img.shape)
torch.Size([3, 100, 100])
"""
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
img = img.transpose(2, 0, 1)
img = np.ascontiguousarray(img[::-1] if random.uniform(0, 1) > self.bgr else img)
img = torch.from_numpy(img)
return img
def _format_segments(self, instances, cls, w, h):
"""
Converts polygon segments to bitmap masks.
Args:
instances (Instances): Object containing segment information.
cls (numpy.ndarray): Class labels for each instance.
w (int): Width of the image.
h (int): Height of the image.
Returns:
(tuple): Tuple containing:
masks (numpy.ndarray): Bitmap masks with shape (N, H, W) or (1, H, W) if mask_overlap is True.
instances (Instances): Updated instances object with sorted segments if mask_overlap is True.
cls (numpy.ndarray): Updated class labels, sorted if mask_overlap is True.
Notes:
- If self.mask_overlap is True, masks are overlapped and sorted by area.
- If self.mask_overlap is False, each mask is represented separately.
- Masks are downsampled according to self.mask_ratio.
"""
segments = instances.segments
if self.mask_overlap:
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
masks = masks[None] # (640, 640) -> (1, 640, 640)
instances = instances[sorted_idx]
cls = cls[sorted_idx]
else:
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio)
return masks, instances, cls
class RandomLoadText:
"""
Randomly samples positive and negative texts and updates class indices accordingly.
This class is responsible for sampling texts from a given set of class texts, including both positive
(present in the image) and negative (not present in the image) samples. It updates the class indices
to reflect the sampled texts and can optionally pad the text list to a fixed length.
Attributes:
prompt_format (str): Format string for text prompts.
neg_samples (Tuple[int, int]): Range for randomly sampling negative texts.
max_samples (int): Maximum number of different text samples in one image.
padding (bool): Whether to pad texts to max_samples.
padding_value (str): The text used for padding when padding is True.
Methods:
__call__: Processes the input labels and returns updated classes and texts.
Examples:
>>> loader = RandomLoadText(prompt_format="Object: {}", neg_samples=(5, 10), max_samples=20)
>>> labels = {"cls": [0, 1, 2], "texts": [["cat"], ["dog"], ["bird"]], "instances": [...]}
>>> updated_labels = loader(labels)
>>> print(updated_labels["texts"])
['Object: cat', 'Object: dog', 'Object: bird', 'Object: elephant', 'Object: car']
"""
def __init__(
self,
prompt_format: str = "{}",
neg_samples: Tuple[int, int] = (80, 80),
max_samples: int = 80,
padding: bool = False,
padding_value: str = "",
) -> None:
"""
Initializes the RandomLoadText class for randomly sampling positive and negative texts.
This class is designed to randomly sample positive texts and negative texts, and update the class
indices accordingly to the number of samples. It can be used for text-based object detection tasks.
Args:
prompt_format (str): Format string for the prompt. Default is '{}'. The format string should
contain a single pair of curly braces {} where the text will be inserted.
neg_samples (Tuple[int, int]): A range to randomly sample negative texts. The first integer
specifies the minimum number of negative samples, and the second integer specifies the
maximum. Default is (80, 80).
max_samples (int): The maximum number of different text samples in one image. Default is 80.
padding (bool): Whether to pad texts to max_samples. If True, the number of texts will always
be equal to max_samples. Default is False.
padding_value (str): The padding text to use when padding is True. Default is an empty string.
Attributes:
prompt_format (str): The format string for the prompt.
neg_samples (Tuple[int, int]): The range for sampling negative texts.
max_samples (int): The maximum number of text samples.
padding (bool): Whether padding is enabled.
padding_value (str): The value used for padding.
Examples:
>>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)
>>> random_load_text.prompt_format
'Object: {}'
>>> random_load_text.neg_samples
(50, 100)
>>> random_load_text.max_samples
120
"""
self.prompt_format = prompt_format
self.neg_samples = neg_samples
self.max_samples = max_samples
self.padding = padding
self.padding_value = padding_value
def __call__(self, labels: dict) -> dict:
"""
Randomly samples positive and negative texts and updates class indices accordingly.
This method samples positive texts based on the existing class labels in the image, and randomly
selects negative texts from the remaining classes. It then updates the class indices to match the
new sampled text order.
Args:
labels (Dict): A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys.
Returns:
(Dict): Updated labels dictionary with new 'cls' and 'texts' entries.
Examples:
>>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20)
>>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]}
>>> updated_labels = loader(labels)
"""
assert "texts" in labels, "No texts found in labels."
class_texts = labels["texts"]
num_classes = len(class_texts)
cls = np.asarray(labels.pop("cls"), dtype=int)
pos_labels = np.unique(cls).tolist()
if len(pos_labels) > self.max_samples:
pos_labels = random.sample(pos_labels, k=self.max_samples)
neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples))
neg_labels = [i for i in range(num_classes) if i not in pos_labels]
neg_labels = random.sample(neg_labels, k=neg_samples)
sampled_labels = pos_labels + neg_labels
random.shuffle(sampled_labels)
label2ids = {label: i for i, label in enumerate(sampled_labels)}
valid_idx = np.zeros(len(labels["instances"]), dtype=bool)
new_cls = []
for i, label in enumerate(cls.squeeze(-1).tolist()):
if label not in label2ids:
continue
valid_idx[i] = True
new_cls.append([label2ids[label]])
labels["instances"] = labels["instances"][valid_idx]
labels["cls"] = np.array(new_cls)
# Randomly select one prompt when there's more than one prompts
texts = []
for label in sampled_labels:
prompts = class_texts[label]
assert len(prompts) > 0
prompt = self.prompt_format.format(prompts[random.randrange(len(prompts))])
texts.append(prompt)
if self.padding:
valid_labels = len(pos_labels) + len(neg_labels)
num_padding = self.max_samples - valid_labels
if num_padding > 0:
texts += [self.padding_value] * num_padding
labels["texts"] = texts
return labels
def v8_transforms(dataset, imgsz, hyp, stretch=False):
"""
Applies a series of image transformations for training.
This function creates a composition of image augmentation techniques to prepare images for YOLO training.
It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments.
Args:
dataset (Dataset): The dataset object containing image data and annotations.
imgsz (int): The target image size for resizing.
hyp (Dict): A dictionary of hyperparameters controlling various aspects of the transformations.
stretch (bool): If True, applies stretching to the image. If False, uses LetterBox resizing.
Returns:
(Compose): A composition of image transformations to be applied to the dataset.
Examples:
>>> from ultralytics.data.dataset import YOLODataset
>>> dataset = YOLODataset(img_path="path/to/images", imgsz=640)
>>> hyp = {"mosaic": 1.0, "copy_paste": 0.5, "degrees": 10.0, "translate": 0.2, "scale": 0.9}
>>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp)
>>> augmented_data = transforms(dataset[0])
"""
mosaic = Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic)
affine = RandomPerspective(
degrees=hyp.degrees,
translate=hyp.translate,
scale=hyp.scale,
shear=hyp.shear,
perspective=hyp.perspective,
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)),
)
pre_transform = Compose([mosaic, affine])
if hyp.copy_paste_mode == "flip":
pre_transform.insert(1, CopyPaste(p=hyp.copy_paste, mode=hyp.copy_paste_mode))
else:
pre_transform.append(
CopyPaste(
dataset,
pre_transform=Compose([Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), affine]),
p=hyp.copy_paste,
mode=hyp.copy_paste_mode,
)
)
flip_idx = dataset.data.get("flip_idx", []) # for keypoints augmentation
if dataset.use_keypoints:
kpt_shape = dataset.data.get("kpt_shape", None)
if len(flip_idx) == 0 and hyp.fliplr > 0.0:
hyp.fliplr = 0.0
LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'")
elif flip_idx and (len(flip_idx) != kpt_shape[0]):
raise ValueError(f"data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}")
return Compose(
[
pre_transform,
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup),
Albumentations(p=1.0),
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
RandomFlip(direction="vertical", p=hyp.flipud),
RandomFlip(direction="horizontal", p=hyp.fliplr, flip_idx=flip_idx),
]
) # transforms
# Classification augmentations -----------------------------------------------------------------------------------------
def classify_transforms(
size=224,
mean=DEFAULT_MEAN,
std=DEFAULT_STD,
interpolation="BILINEAR",
crop_fraction: float = DEFAULT_CROP_FRACTION,
):
"""
Creates a composition of image transforms for classification tasks.
This function generates a sequence of torchvision transforms suitable for preprocessing images
for classification models during evaluation or inference. The transforms include resizing,
center cropping, conversion to tensor, and normalization.
Args:
size (int | tuple): The target size for the transformed image. If an int, it defines the shortest edge. If a
tuple, it defines (height, width).
mean (tuple): Mean values for each RGB channel used in normalization.
std (tuple): Standard deviation values for each RGB channel used in normalization.
interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.
crop_fraction (float): Fraction of the image to be cropped.
Returns:
(torchvision.transforms.Compose): A composition of torchvision transforms.
Examples:
>>> transforms = classify_transforms(size=224)
>>> img = Image.open("path/to/image.jpg")
>>> transformed_img = transforms(img)
"""
import torchvision.transforms as T # scope for faster 'import ultralytics'
if isinstance(size, (tuple, list)):
assert len(size) == 2, f"'size' tuples must be length 2, not length {len(size)}"
scale_size = tuple(math.floor(x / crop_fraction) for x in size)
else:
scale_size = math.floor(size / crop_fraction)
scale_size = (scale_size, scale_size)
# Aspect ratio is preserved, crops center within image, no borders are added, image is lost
if scale_size[0] == scale_size[1]:
# Simple case, use torchvision built-in Resize with the shortest edge mode (scalar size arg)
tfl = [T.Resize(scale_size[0], interpolation=getattr(T.InterpolationMode, interpolation))]
else:
# Resize the shortest edge to matching target dim for non-square target
tfl = [T.Resize(scale_size)]
tfl.extend(
[
T.CenterCrop(size),
T.ToTensor(),
T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
]
)
return T.Compose(tfl)
# Classification training augmentations --------------------------------------------------------------------------------
def classify_augmentations(
size=224,
mean=DEFAULT_MEAN,
std=DEFAULT_STD,
scale=None,
ratio=None,
hflip=0.5,
vflip=0.0,
auto_augment=None,
hsv_h=0.015, # image HSV-Hue augmentation (fraction)
hsv_s=0.4, # image HSV-Saturation augmentation (fraction)
hsv_v=0.4, # image HSV-Value augmentation (fraction)
force_color_jitter=False,
erasing=0.0,
interpolation="BILINEAR",
):
"""
Creates a composition of image augmentation transforms for classification tasks.
This function generates a set of image transformations suitable for training classification models. It includes
options for resizing, flipping, color jittering, auto augmentation, and random erasing.
Args:
size (int): Target size for the image after transformations.
mean (tuple): Mean values for normalization, one per channel.
std (tuple): Standard deviation values for normalization, one per channel.
scale (tuple | None): Range of size of the origin size cropped.
ratio (tuple | None): Range of aspect ratio of the origin aspect ratio cropped.
hflip (float): Probability of horizontal flip.
vflip (float): Probability of vertical flip.
auto_augment (str | None): Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None.
hsv_h (float): Image HSV-Hue augmentation factor.
hsv_s (float): Image HSV-Saturation augmentation factor.
hsv_v (float): Image HSV-Value augmentation factor.
force_color_jitter (bool): Whether to apply color jitter even if auto augment is enabled.
erasing (float): Probability of random erasing.
interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.
Returns:
(torchvision.transforms.Compose): A composition of image augmentation transforms.
Examples:
>>> transforms = classify_augmentations(size=224, auto_augment="randaugment")
>>> augmented_image = transforms(original_image)
"""
# Transforms to apply if Albumentations not installed
import torchvision.transforms as T # scope for faster 'import ultralytics'
if not isinstance(size, int):
raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)")
scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range
ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) # default imagenet ratio range
interpolation = getattr(T.InterpolationMode, interpolation)
primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)]
if hflip > 0.0:
primary_tfl.append(T.RandomHorizontalFlip(p=hflip))
if vflip > 0.0:
primary_tfl.append(T.RandomVerticalFlip(p=vflip))
secondary_tfl = []
disable_color_jitter = False
if auto_augment:
assert isinstance(auto_augment, str), f"Provided argument should be string, but got type {type(auto_augment)}"
# color jitter is typically disabled if AA/RA on,
# this allows override without breaking old hparm cfgs
disable_color_jitter = not force_color_jitter
if auto_augment == "randaugment":
if TORCHVISION_0_11:
secondary_tfl.append(T.RandAugment(interpolation=interpolation))
else:
LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.')
elif auto_augment == "augmix":
if TORCHVISION_0_13:
secondary_tfl.append(T.AugMix(interpolation=interpolation))
else:
LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.')
elif auto_augment == "autoaugment":
if TORCHVISION_0_10:
secondary_tfl.append(T.AutoAugment(interpolation=interpolation))
else:
LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.')
else:
raise ValueError(
f'Invalid auto_augment policy: {auto_augment}. Should be one of "randaugment", '
f'"augmix", "autoaugment" or None'
)
if not disable_color_jitter:
secondary_tfl.append(T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h))
final_tfl = [
T.ToTensor(),
T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
T.RandomErasing(p=erasing, inplace=True),
]
return T.Compose(primary_tfl + secondary_tfl + final_tfl)
# NOTE: keep this class for backward compatibility
class ClassifyLetterBox:
"""
A class for resizing and padding images for classification tasks.
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).
It resizes and pads images to a specified size while maintaining the original aspect ratio.
Attributes:
h (int): Target height of the image.
w (int): Target width of the image.
auto (bool): If True, automatically calculates the short side using stride.
stride (int): The stride value, used when 'auto' is True.
Methods:
__call__: Applies the letterbox transformation to an input image.
Examples:
>>> transform = ClassifyLetterBox(size=(640, 640), auto=False, stride=32)
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> result = transform(img)
>>> print(result.shape)
(640, 640, 3)
"""
def __init__(self, size=(640, 640), auto=False, stride=32):
"""
Initializes the ClassifyLetterBox object for image preprocessing.
This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and
pads images to a specified size while maintaining the original aspect ratio.
Args:
size (int | Tuple[int, int]): Target size for the letterboxed image. If an int, a square image of
(size, size) is created. If a tuple, it should be (height, width).
auto (bool): If True, automatically calculates the short side based on stride. Default is False.
stride (int): The stride value, used when 'auto' is True. Default is 32.
Attributes:
h (int): Target height of the letterboxed image.
w (int): Target width of the letterboxed image.
auto (bool): Flag indicating whether to automatically calculate short side.
stride (int): Stride value for automatic short side calculation.
Examples:
>>> transform = ClassifyLetterBox(size=224)
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> result = transform(img)
>>> print(result.shape)
(224, 224, 3)
"""
super().__init__()
self.h, self.w = (size, size) if isinstance(size, int) else size
self.auto = auto # pass max size integer, automatically solve for short side using stride
self.stride = stride # used with auto
def __call__(self, im):
"""
Resizes and pads an image using the letterbox method.
This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio,
then pads the resized image to match the target size.
Args:
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C).
Returns:
(numpy.ndarray): Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are
the target height and width respectively.
Examples:
>>> letterbox = ClassifyLetterBox(size=(640, 640))
>>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8)
>>> resized_image = letterbox(image)
>>> print(resized_image.shape)
(640, 640, 3)
"""
imh, imw = im.shape[:2]
r = min(self.h / imh, self.w / imw) # ratio of new/old dimensions
h, w = round(imh * r), round(imw * r) # resized image dimensions
# Calculate padding dimensions
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w)
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
# Create padded image
im_out = np.full((hs, ws, 3), 114, dtype=im.dtype)
im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
return im_out
# NOTE: keep this class for backward compatibility
class CenterCrop:
"""
Applies center cropping to images for classification tasks.
This class performs center cropping on input images, resizing them to a specified size while maintaining the aspect
ratio. It is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).
Attributes:
h (int): Target height of the cropped image.
w (int): Target width of the cropped image.
Methods:
__call__: Applies the center crop transformation to an input image.
Examples:
>>> transform = CenterCrop(640)
>>> image = np.random.randint(0, 255, (1080, 1920, 3), dtype=np.uint8)
>>> cropped_image = transform(image)
>>> print(cropped_image.shape)
(640, 640, 3)
"""
def __init__(self, size=640):
"""
Initializes the CenterCrop object for image preprocessing.
This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).
It performs a center crop on input images to a specified size.
Args:
size (int | Tuple[int, int]): The desired output size of the crop. If size is an int, a square crop
(size, size) is made. If size is a sequence like (h, w), it is used as the output size.
Returns:
(None): This method initializes the object and does not return anything.
Examples:
>>> transform = CenterCrop(224)
>>> img = np.random.rand(300, 300, 3)
>>> cropped_img = transform(img)
>>> print(cropped_img.shape)
(224, 224, 3)
"""
super().__init__()
self.h, self.w = (size, size) if isinstance(size, int) else size
def __call__(self, im):
"""
Applies center cropping to an input image.
This method resizes and crops the center of the image using a letterbox method. It maintains the aspect
ratio of the original image while fitting it into the specified dimensions.
Args:
im (numpy.ndarray | PIL.Image.Image): The input image as a numpy array of shape (H, W, C) or a
PIL Image object.
Returns:
(numpy.ndarray): The center-cropped and resized image as a numpy array of shape (self.h, self.w, C).
Examples:
>>> transform = CenterCrop(size=224)
>>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)
>>> cropped_image = transform(image)
>>> assert cropped_image.shape == (224, 224, 3)
"""
if isinstance(im, Image.Image): # convert from PIL to numpy array if required
im = np.asarray(im)
imh, imw = im.shape[:2]
m = min(imh, imw) # min dimension
top, left = (imh - m) // 2, (imw - m) // 2
return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
# NOTE: keep this class for backward compatibility
class ToTensor:
"""
Converts an image from a numpy array to a PyTorch tensor.
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).
Attributes:
half (bool): If True, converts the image to half precision (float16).
Methods:
__call__: Applies the tensor conversion to an input image.
Examples:
>>> transform = ToTensor(half=True)
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> tensor_img = transform(img)
>>> print(tensor_img.shape, tensor_img.dtype)
torch.Size([3, 640, 640]) torch.float16
Notes:
The input image is expected to be in BGR format with shape (H, W, C).
The output tensor will be in RGB format with shape (C, H, W), normalized to [0, 1].
"""
def __init__(self, half=False):
"""
Initializes the ToTensor object for converting images to PyTorch tensors.
This class is designed to be used as part of a transformation pipeline for image preprocessing in the
Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option
for half-precision (float16) conversion.
Args:
half (bool): If True, converts the tensor to half precision (float16). Default is False.
Examples:
>>> transform = ToTensor(half=True)
>>> img = np.random.rand(640, 640, 3)
>>> tensor_img = transform(img)
>>> print(tensor_img.dtype)
torch.float16
"""
super().__init__()
self.half = half
def __call__(self, im):
"""
Transforms an image from a numpy array to a PyTorch tensor.
This method converts the input image from a numpy array to a PyTorch tensor, applying optional
half-precision conversion and normalization. The image is transposed from HWC to CHW format and
the color channels are reversed from BGR to RGB.
Args:
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order.
Returns:
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized
to [0, 1] with shape (C, H, W) in RGB order.
Examples:
>>> transform = ToTensor(half=True)
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> tensor_img = transform(img)
>>> print(tensor_img.shape, tensor_img.dtype)
torch.Size([3, 640, 640]) torch.float16
"""
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
im = torch.from_numpy(im) # to torch
im = im.half() if self.half else im.float() # uint8 to fp16/32
im /= 255.0 # 0-255 to 0.0-1.0
return im
|