File size: 123,168 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
# Ultralytics YOLO 🚀, AGPL-3.0 license

import math
import random
from copy import deepcopy
from typing import Tuple, Union

import cv2
import numpy as np
import torch
from PIL import Image

from ultralytics.data.utils import polygons2masks, polygons2masks_overlap
from ultralytics.utils import LOGGER, colorstr
from ultralytics.utils.checks import check_version
from ultralytics.utils.instance import Instances
from ultralytics.utils.metrics import bbox_ioa
from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr
from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13

DEFAULT_MEAN = (0.0, 0.0, 0.0)
DEFAULT_STD = (1.0, 1.0, 1.0)
DEFAULT_CROP_FRACTION = 1.0


class BaseTransform:
    """

    Base class for image transformations in the Ultralytics library.



    This class serves as a foundation for implementing various image processing operations, designed to be

    compatible with both classification and semantic segmentation tasks.



    Methods:

        apply_image: Applies image transformations to labels.

        apply_instances: Applies transformations to object instances in labels.

        apply_semantic: Applies semantic segmentation to an image.

        __call__: Applies all label transformations to an image, instances, and semantic masks.



    Examples:

        >>> transform = BaseTransform()

        >>> labels = {"image": np.array(...), "instances": [...], "semantic": np.array(...)}

        >>> transformed_labels = transform(labels)

    """

    def __init__(self) -> None:
        """

        Initializes the BaseTransform object.



        This constructor sets up the base transformation object, which can be extended for specific image

        processing tasks. It is designed to be compatible with both classification and semantic segmentation.



        Examples:

            >>> transform = BaseTransform()

        """
        pass

    def apply_image(self, labels):
        """

        Applies image transformations to labels.



        This method is intended to be overridden by subclasses to implement specific image transformation

        logic. In its base form, it returns the input labels unchanged.



        Args:

            labels (Any): The input labels to be transformed. The exact type and structure of labels may

                vary depending on the specific implementation.



        Returns:

            (Any): The transformed labels. In the base implementation, this is identical to the input.



        Examples:

            >>> transform = BaseTransform()

            >>> original_labels = [1, 2, 3]

            >>> transformed_labels = transform.apply_image(original_labels)

            >>> print(transformed_labels)

            [1, 2, 3]

        """
        pass

    def apply_instances(self, labels):
        """

        Applies transformations to object instances in labels.



        This method is responsible for applying various transformations to object instances within the given

        labels. It is designed to be overridden by subclasses to implement specific instance transformation

        logic.



        Args:

            labels (Dict): A dictionary containing label information, including object instances.



        Returns:

            (Dict): The modified labels dictionary with transformed object instances.



        Examples:

            >>> transform = BaseTransform()

            >>> labels = {"instances": Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))}

            >>> transformed_labels = transform.apply_instances(labels)

        """
        pass

    def apply_semantic(self, labels):
        """

        Applies semantic segmentation transformations to an image.



        This method is intended to be overridden by subclasses to implement specific semantic segmentation

        transformations. In its base form, it does not perform any operations.



        Args:

            labels (Any): The input labels or semantic segmentation mask to be transformed.



        Returns:

            (Any): The transformed semantic segmentation mask or labels.



        Examples:

            >>> transform = BaseTransform()

            >>> semantic_mask = np.zeros((100, 100), dtype=np.uint8)

            >>> transformed_mask = transform.apply_semantic(semantic_mask)

        """
        pass

    def __call__(self, labels):
        """

        Applies all label transformations to an image, instances, and semantic masks.



        This method orchestrates the application of various transformations defined in the BaseTransform class

        to the input labels. It sequentially calls the apply_image and apply_instances methods to process the

        image and object instances, respectively.



        Args:

            labels (Dict): A dictionary containing image data and annotations. Expected keys include 'img' for

                the image data, and 'instances' for object instances.



        Returns:

            (Dict): The input labels dictionary with transformed image and instances.



        Examples:

            >>> transform = BaseTransform()

            >>> labels = {"img": np.random.rand(640, 640, 3), "instances": []}

            >>> transformed_labels = transform(labels)

        """
        self.apply_image(labels)
        self.apply_instances(labels)
        self.apply_semantic(labels)


class Compose:
    """

    A class for composing multiple image transformations.



    Attributes:

        transforms (List[Callable]): A list of transformation functions to be applied sequentially.



    Methods:

        __call__: Applies a series of transformations to input data.

        append: Appends a new transform to the existing list of transforms.

        insert: Inserts a new transform at a specified index in the list of transforms.

        __getitem__: Retrieves a specific transform or a set of transforms using indexing.

        __setitem__: Sets a specific transform or a set of transforms using indexing.

        tolist: Converts the list of transforms to a standard Python list.



    Examples:

        >>> transforms = [RandomFlip(), RandomPerspective(30)]

        >>> compose = Compose(transforms)

        >>> transformed_data = compose(data)

        >>> compose.append(CenterCrop((224, 224)))

        >>> compose.insert(0, RandomFlip())

    """

    def __init__(self, transforms):
        """

        Initializes the Compose object with a list of transforms.



        Args:

            transforms (List[Callable]): A list of callable transform objects to be applied sequentially.



        Examples:

            >>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip

            >>> transforms = [RandomHSV(), RandomFlip()]

            >>> compose = Compose(transforms)

        """
        self.transforms = transforms if isinstance(transforms, list) else [transforms]

    def __call__(self, data):
        """

        Applies a series of transformations to input data. This method sequentially applies each transformation in the

        Compose object's list of transforms to the input data.



        Args:

            data (Any): The input data to be transformed. This can be of any type, depending on the

                transformations in the list.



        Returns:

            (Any): The transformed data after applying all transformations in sequence.



        Examples:

            >>> transforms = [Transform1(), Transform2(), Transform3()]

            >>> compose = Compose(transforms)

            >>> transformed_data = compose(input_data)

        """
        for t in self.transforms:
            data = t(data)
        return data

    def append(self, transform):
        """

        Appends a new transform to the existing list of transforms.



        Args:

            transform (BaseTransform): The transformation to be added to the composition.



        Examples:

            >>> compose = Compose([RandomFlip(), RandomPerspective()])

            >>> compose.append(RandomHSV())

        """
        self.transforms.append(transform)

    def insert(self, index, transform):
        """

        Inserts a new transform at a specified index in the existing list of transforms.



        Args:

            index (int): The index at which to insert the new transform.

            transform (BaseTransform): The transform object to be inserted.



        Examples:

            >>> compose = Compose([Transform1(), Transform2()])

            >>> compose.insert(1, Transform3())

            >>> len(compose.transforms)

            3

        """
        self.transforms.insert(index, transform)

    def __getitem__(self, index: Union[list, int]) -> "Compose":
        """

        Retrieves a specific transform or a set of transforms using indexing.



        Args:

            index (int | List[int]): Index or list of indices of the transforms to retrieve.



        Returns:

            (Compose): A new Compose object containing the selected transform(s).



        Raises:

            AssertionError: If the index is not of type int or list.



        Examples:

            >>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)]

            >>> compose = Compose(transforms)

            >>> single_transform = compose[1]  # Returns a Compose object with only RandomPerspective

            >>> multiple_transforms = compose[0:2]  # Returns a Compose object with RandomFlip and RandomPerspective

        """
        assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
        index = [index] if isinstance(index, int) else index
        return Compose([self.transforms[i] for i in index])

    def __setitem__(self, index: Union[list, int], value: Union[list, int]) -> None:
        """

        Sets one or more transforms in the composition using indexing.



        Args:

            index (int | List[int]): Index or list of indices to set transforms at.

            value (Any | List[Any]): Transform or list of transforms to set at the specified index(es).



        Raises:

            AssertionError: If index type is invalid, value type doesn't match index type, or index is out of range.



        Examples:

            >>> compose = Compose([Transform1(), Transform2(), Transform3()])

            >>> compose[1] = NewTransform()  # Replace second transform

            >>> compose[0:2] = [NewTransform1(), NewTransform2()]  # Replace first two transforms

        """
        assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
        if isinstance(index, list):
            assert isinstance(
                value, list
            ), f"The indices should be the same type as values, but got {type(index)} and {type(value)}"
        if isinstance(index, int):
            index, value = [index], [value]
        for i, v in zip(index, value):
            assert i < len(self.transforms), f"list index {i} out of range {len(self.transforms)}."
            self.transforms[i] = v

    def tolist(self):
        """

        Converts the list of transforms to a standard Python list.



        Returns:

            (List): A list containing all the transform objects in the Compose instance.



        Examples:

            >>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()]

            >>> compose = Compose(transforms)

            >>> transform_list = compose.tolist()

            >>> print(len(transform_list))

            3

        """
        return self.transforms

    def __repr__(self):
        """

        Returns a string representation of the Compose object.



        Returns:

            (str): A string representation of the Compose object, including the list of transforms.



        Examples:

            >>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)]

            >>> compose = Compose(transforms)

            >>> print(compose)

            Compose([

                RandomFlip(),

                RandomPerspective(degrees=10, translate=0.1, scale=0.1)

            ])

        """
        return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})"


class BaseMixTransform:
    """

    Base class for mix transformations like MixUp and Mosaic.



    This class provides a foundation for implementing mix transformations on datasets. It handles the

    probability-based application of transforms and manages the mixing of multiple images and labels.



    Attributes:

        dataset (Any): The dataset object containing images and labels.

        pre_transform (Callable | None): Optional transform to apply before mixing.

        p (float): Probability of applying the mix transformation.



    Methods:

        __call__: Applies the mix transformation to the input labels.

        _mix_transform: Abstract method to be implemented by subclasses for specific mix operations.

        get_indexes: Abstract method to get indexes of images to be mixed.

        _update_label_text: Updates label text for mixed images.



    Examples:

        >>> class CustomMixTransform(BaseMixTransform):

        ...     def _mix_transform(self, labels):

        ...         # Implement custom mix logic here

        ...         return labels

        ...

        ...     def get_indexes(self):

        ...         return [random.randint(0, len(self.dataset) - 1) for _ in range(3)]

        >>> dataset = YourDataset()

        >>> transform = CustomMixTransform(dataset, p=0.5)

        >>> mixed_labels = transform(original_labels)

    """

    def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
        """

        Initializes the BaseMixTransform object for mix transformations like MixUp and Mosaic.



        This class serves as a base for implementing mix transformations in image processing pipelines.



        Args:

            dataset (Any): The dataset object containing images and labels for mixing.

            pre_transform (Callable | None): Optional transform to apply before mixing.

            p (float): Probability of applying the mix transformation. Should be in the range [0.0, 1.0].



        Examples:

            >>> dataset = YOLODataset("path/to/data")

            >>> pre_transform = Compose([RandomFlip(), RandomPerspective()])

            >>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)

        """
        self.dataset = dataset
        self.pre_transform = pre_transform
        self.p = p

    def __call__(self, labels):
        """

        Applies pre-processing transforms and mixup/mosaic transforms to labels data.



        This method determines whether to apply the mix transform based on a probability factor. If applied, it

        selects additional images, applies pre-transforms if specified, and then performs the mix transform.



        Args:

            labels (Dict): A dictionary containing label data for an image.



        Returns:

            (Dict): The transformed labels dictionary, which may include mixed data from other images.



        Examples:

            >>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5)

            >>> result = transform({"image": img, "bboxes": boxes, "cls": classes})

        """
        if random.uniform(0, 1) > self.p:
            return labels

        # Get index of one or three other images
        indexes = self.get_indexes()
        if isinstance(indexes, int):
            indexes = [indexes]

        # Get images information will be used for Mosaic or MixUp
        mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]

        if self.pre_transform is not None:
            for i, data in enumerate(mix_labels):
                mix_labels[i] = self.pre_transform(data)
        labels["mix_labels"] = mix_labels

        # Update cls and texts
        labels = self._update_label_text(labels)
        # Mosaic or MixUp
        labels = self._mix_transform(labels)
        labels.pop("mix_labels", None)
        return labels

    def _mix_transform(self, labels):
        """

        Applies MixUp or Mosaic augmentation to the label dictionary.



        This method should be implemented by subclasses to perform specific mix transformations like MixUp or

        Mosaic. It modifies the input label dictionary in-place with the augmented data.



        Args:

            labels (Dict): A dictionary containing image and label data. Expected to have a 'mix_labels' key

                with a list of additional image and label data for mixing.



        Returns:

            (Dict): The modified labels dictionary with augmented data after applying the mix transform.



        Examples:

            >>> transform = BaseMixTransform(dataset)

            >>> labels = {"image": img, "bboxes": boxes, "mix_labels": [{"image": img2, "bboxes": boxes2}]}

            >>> augmented_labels = transform._mix_transform(labels)

        """
        raise NotImplementedError

    def get_indexes(self):
        """

        Gets a list of shuffled indexes for mosaic augmentation.



        Returns:

            (List[int]): A list of shuffled indexes from the dataset.



        Examples:

            >>> transform = BaseMixTransform(dataset)

            >>> indexes = transform.get_indexes()

            >>> print(indexes)  # [3, 18, 7, 2]

        """
        raise NotImplementedError

    def _update_label_text(self, labels):
        """

        Updates label text and class IDs for mixed labels in image augmentation.



        This method processes the 'texts' and 'cls' fields of the input labels dictionary and any mixed labels,

        creating a unified set of text labels and updating class IDs accordingly.



        Args:

            labels (Dict): A dictionary containing label information, including 'texts' and 'cls' fields,

                and optionally a 'mix_labels' field with additional label dictionaries.



        Returns:

            (Dict): The updated labels dictionary with unified text labels and updated class IDs.



        Examples:

            >>> labels = {

            ...     "texts": [["cat"], ["dog"]],

            ...     "cls": torch.tensor([[0], [1]]),

            ...     "mix_labels": [{"texts": [["bird"], ["fish"]], "cls": torch.tensor([[0], [1]])}],

            ... }

            >>> updated_labels = self._update_label_text(labels)

            >>> print(updated_labels["texts"])

            [['cat'], ['dog'], ['bird'], ['fish']]

            >>> print(updated_labels["cls"])

            tensor([[0],

                    [1]])

            >>> print(updated_labels["mix_labels"][0]["cls"])

            tensor([[2],

                    [3]])

        """
        if "texts" not in labels:
            return labels

        mix_texts = sum([labels["texts"]] + [x["texts"] for x in labels["mix_labels"]], [])
        mix_texts = list({tuple(x) for x in mix_texts})
        text2id = {text: i for i, text in enumerate(mix_texts)}

        for label in [labels] + labels["mix_labels"]:
            for i, cls in enumerate(label["cls"].squeeze(-1).tolist()):
                text = label["texts"][int(cls)]
                label["cls"][i] = text2id[tuple(text)]
            label["texts"] = mix_texts
        return labels


class Mosaic(BaseMixTransform):
    """

    Mosaic augmentation for image datasets.



    This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.

    The augmentation is applied to a dataset with a given probability.



    Attributes:

        dataset: The dataset on which the mosaic augmentation is applied.

        imgsz (int): Image size (height and width) after mosaic pipeline of a single image.

        p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.

        n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).

        border (Tuple[int, int]): Border size for width and height.



    Methods:

        get_indexes: Returns a list of random indexes from the dataset.

        _mix_transform: Applies mixup transformation to the input image and labels.

        _mosaic3: Creates a 1x3 image mosaic.

        _mosaic4: Creates a 2x2 image mosaic.

        _mosaic9: Creates a 3x3 image mosaic.

        _update_labels: Updates labels with padding.

        _cat_labels: Concatenates labels and clips mosaic border instances.



    Examples:

        >>> from ultralytics.data.augment import Mosaic

        >>> dataset = YourDataset(...)  # Your image dataset

        >>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)

        >>> augmented_labels = mosaic_aug(original_labels)

    """

    def __init__(self, dataset, imgsz=640, p=1.0, n=4):
        """

        Initializes the Mosaic augmentation object.



        This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.

        The augmentation is applied to a dataset with a given probability.



        Args:

            dataset (Any): The dataset on which the mosaic augmentation is applied.

            imgsz (int): Image size (height and width) after mosaic pipeline of a single image.

            p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.

            n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).



        Examples:

            >>> from ultralytics.data.augment import Mosaic

            >>> dataset = YourDataset(...)

            >>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)

        """
        assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
        assert n in {4, 9}, "grid must be equal to 4 or 9."
        super().__init__(dataset=dataset, p=p)
        self.imgsz = imgsz
        self.border = (-imgsz // 2, -imgsz // 2)  # width, height
        self.n = n

    def get_indexes(self, buffer=True):
        """

        Returns a list of random indexes from the dataset for mosaic augmentation.



        This method selects random image indexes either from a buffer or from the entire dataset, depending on

        the 'buffer' parameter. It is used to choose images for creating mosaic augmentations.



        Args:

            buffer (bool): If True, selects images from the dataset buffer. If False, selects from the entire

                dataset.



        Returns:

            (List[int]): A list of random image indexes. The length of the list is n-1, where n is the number

                of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9).



        Examples:

            >>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)

            >>> indexes = mosaic.get_indexes()

            >>> print(len(indexes))  # Output: 3

        """
        if buffer:  # select images from buffer
            return random.choices(list(self.dataset.buffer), k=self.n - 1)
        else:  # select any images
            return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)]

    def _mix_transform(self, labels):
        """

        Applies mosaic augmentation to the input image and labels.



        This method combines multiple images (3, 4, or 9) into a single mosaic image based on the 'n' attribute.

        It ensures that rectangular annotations are not present and that there are other images available for

        mosaic augmentation.



        Args:

            labels (Dict): A dictionary containing image data and annotations. Expected keys include:

                - 'rect_shape': Should be None as rect and mosaic are mutually exclusive.

                - 'mix_labels': A list of dictionaries containing data for other images to be used in the mosaic.



        Returns:

            (Dict): A dictionary containing the mosaic-augmented image and updated annotations.



        Raises:

            AssertionError: If 'rect_shape' is not None or if 'mix_labels' is empty.



        Examples:

            >>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)

            >>> augmented_data = mosaic._mix_transform(labels)

        """
        assert labels.get("rect_shape", None) is None, "rect and mosaic are mutually exclusive."
        assert len(labels.get("mix_labels", [])), "There are no other images for mosaic augment."
        return (
            self._mosaic3(labels) if self.n == 3 else self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels)
        )  # This code is modified for mosaic3 method.

    def _mosaic3(self, labels):
        """

        Creates a 1x3 image mosaic by combining three images.



        This method arranges three images in a horizontal layout, with the main image in the center and two

        additional images on either side. It's part of the Mosaic augmentation technique used in object detection.



        Args:

            labels (Dict): A dictionary containing image and label information for the main (center) image.

                Must include 'img' key with the image array, and 'mix_labels' key with a list of two

                dictionaries containing information for the side images.



        Returns:

            (Dict): A dictionary with the mosaic image and updated labels. Keys include:

                - 'img' (np.ndarray): The mosaic image array with shape (H, W, C).

                - Other keys from the input labels, updated to reflect the new image dimensions.



        Examples:

            >>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=3)

            >>> labels = {

            ...     "img": np.random.rand(480, 640, 3),

            ...     "mix_labels": [{"img": np.random.rand(480, 640, 3)} for _ in range(2)],

            ... }

            >>> result = mosaic._mosaic3(labels)

            >>> print(result["img"].shape)

            (640, 640, 3)

        """
        mosaic_labels = []
        s = self.imgsz
        for i in range(3):
            labels_patch = labels if i == 0 else labels["mix_labels"][i - 1]
            # Load image
            img = labels_patch["img"]
            h, w = labels_patch.pop("resized_shape")

            # Place img in img3
            if i == 0:  # center
                img3 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 3 tiles
                h0, w0 = h, w
                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
            elif i == 1:  # right
                c = s + w0, s, s + w0 + w, s + h
            elif i == 2:  # left
                c = s - w, s + h0 - h, s, s + h0

            padw, padh = c[:2]
            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords

            img3[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :]  # img3[ymin:ymax, xmin:xmax]
            # hp, wp = h, w  # height, width previous for next iteration

            # Labels assuming imgsz*2 mosaic size
            labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1])
            mosaic_labels.append(labels_patch)
        final_labels = self._cat_labels(mosaic_labels)

        final_labels["img"] = img3[-self.border[0] : self.border[0], -self.border[1] : self.border[1]]
        return final_labels

    def _mosaic4(self, labels):
        """

        Creates a 2x2 image mosaic from four input images.



        This method combines four images into a single mosaic image by placing them in a 2x2 grid. It also

        updates the corresponding labels for each image in the mosaic.



        Args:

            labels (Dict): A dictionary containing image data and labels for the base image (index 0) and three

                additional images (indices 1-3) in the 'mix_labels' key.



        Returns:

            (Dict): A dictionary containing the mosaic image and updated labels. The 'img' key contains the mosaic

                image as a numpy array, and other keys contain the combined and adjusted labels for all four images.



        Examples:

            >>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)

            >>> labels = {

            ...     "img": np.random.rand(480, 640, 3),

            ...     "mix_labels": [{"img": np.random.rand(480, 640, 3)} for _ in range(3)],

            ... }

            >>> result = mosaic._mosaic4(labels)

            >>> assert result["img"].shape == (1280, 1280, 3)

        """
        mosaic_labels = []
        s = self.imgsz
        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border)  # mosaic center x, y
        for i in range(4):
            labels_patch = labels if i == 0 else labels["mix_labels"][i - 1]
            # Load image
            img = labels_patch["img"]
            h, w = labels_patch.pop("resized_shape")

            # Place img in img4
            if i == 0:  # top left
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            labels_patch = self._update_labels(labels_patch, padw, padh)
            mosaic_labels.append(labels_patch)
        final_labels = self._cat_labels(mosaic_labels)
        final_labels["img"] = img4
        return final_labels

    def _mosaic9(self, labels):
        """

        Creates a 3x3 image mosaic from the input image and eight additional images.



        This method combines nine images into a single mosaic image. The input image is placed at the center,

        and eight additional images from the dataset are placed around it in a 3x3 grid pattern.



        Args:

            labels (Dict): A dictionary containing the input image and its associated labels. It should have

                the following keys:

                - 'img' (numpy.ndarray): The input image.

                - 'resized_shape' (Tuple[int, int]): The shape of the resized image (height, width).

                - 'mix_labels' (List[Dict]): A list of dictionaries containing information for the additional

                  eight images, each with the same structure as the input labels.



        Returns:

            (Dict): A dictionary containing the mosaic image and updated labels. It includes the following keys:

                - 'img' (numpy.ndarray): The final mosaic image.

                - Other keys from the input labels, updated to reflect the new mosaic arrangement.



        Examples:

            >>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=9)

            >>> input_labels = dataset[0]

            >>> mosaic_result = mosaic._mosaic9(input_labels)

            >>> mosaic_image = mosaic_result["img"]

        """
        mosaic_labels = []
        s = self.imgsz
        hp, wp = -1, -1  # height, width previous
        for i in range(9):
            labels_patch = labels if i == 0 else labels["mix_labels"][i - 1]
            # Load image
            img = labels_patch["img"]
            h, w = labels_patch.pop("resized_shape")

            # Place img in img9
            if i == 0:  # center
                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                h0, w0 = h, w
                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
            elif i == 1:  # top
                c = s, s - h, s + w, s
            elif i == 2:  # top right
                c = s + wp, s - h, s + wp + w, s
            elif i == 3:  # right
                c = s + w0, s, s + w0 + w, s + h
            elif i == 4:  # bottom right
                c = s + w0, s + hp, s + w0 + w, s + hp + h
            elif i == 5:  # bottom
                c = s + w0 - w, s + h0, s + w0, s + h0 + h
            elif i == 6:  # bottom left
                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
            elif i == 7:  # left
                c = s - w, s + h0 - h, s, s + h0
            elif i == 8:  # top left
                c = s - w, s + h0 - hp - h, s, s + h0 - hp

            padw, padh = c[:2]
            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords

            # Image
            img9[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :]  # img9[ymin:ymax, xmin:xmax]
            hp, wp = h, w  # height, width previous for next iteration

            # Labels assuming imgsz*2 mosaic size
            labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1])
            mosaic_labels.append(labels_patch)
        final_labels = self._cat_labels(mosaic_labels)

        final_labels["img"] = img9[-self.border[0] : self.border[0], -self.border[1] : self.border[1]]
        return final_labels

    @staticmethod
    def _update_labels(labels, padw, padh):
        """

        Updates label coordinates with padding values.



        This method adjusts the bounding box coordinates of object instances in the labels by adding padding

        values. It also denormalizes the coordinates if they were previously normalized.



        Args:

            labels (Dict): A dictionary containing image and instance information.

            padw (int): Padding width to be added to the x-coordinates.

            padh (int): Padding height to be added to the y-coordinates.



        Returns:

            (Dict): Updated labels dictionary with adjusted instance coordinates.



        Examples:

            >>> labels = {"img": np.zeros((100, 100, 3)), "instances": Instances(...)}

            >>> padw, padh = 50, 50

            >>> updated_labels = Mosaic._update_labels(labels, padw, padh)

        """
        nh, nw = labels["img"].shape[:2]
        labels["instances"].convert_bbox(format="xyxy")
        labels["instances"].denormalize(nw, nh)
        labels["instances"].add_padding(padw, padh)
        return labels

    def _cat_labels(self, mosaic_labels):
        """

        Concatenates and processes labels for mosaic augmentation.



        This method combines labels from multiple images used in mosaic augmentation, clips instances to the

        mosaic border, and removes zero-area boxes.



        Args:

            mosaic_labels (List[Dict]): A list of label dictionaries for each image in the mosaic.



        Returns:

            (Dict): A dictionary containing concatenated and processed labels for the mosaic image, including:

                - im_file (str): File path of the first image in the mosaic.

                - ori_shape (Tuple[int, int]): Original shape of the first image.

                - resized_shape (Tuple[int, int]): Shape of the mosaic image (imgsz * 2, imgsz * 2).

                - cls (np.ndarray): Concatenated class labels.

                - instances (Instances): Concatenated instance annotations.

                - mosaic_border (Tuple[int, int]): Mosaic border size.

                - texts (List[str], optional): Text labels if present in the original labels.



        Examples:

            >>> mosaic = Mosaic(dataset, imgsz=640)

            >>> mosaic_labels = [{"cls": np.array([0, 1]), "instances": Instances(...)} for _ in range(4)]

            >>> result = mosaic._cat_labels(mosaic_labels)

            >>> print(result.keys())

            dict_keys(['im_file', 'ori_shape', 'resized_shape', 'cls', 'instances', 'mosaic_border'])

        """
        if len(mosaic_labels) == 0:
            return {}
        cls = []
        instances = []
        imgsz = self.imgsz * 2  # mosaic imgsz
        for labels in mosaic_labels:
            cls.append(labels["cls"])
            instances.append(labels["instances"])
        # Final labels
        final_labels = {
            "im_file": mosaic_labels[0]["im_file"],
            "ori_shape": mosaic_labels[0]["ori_shape"],
            "resized_shape": (imgsz, imgsz),
            "cls": np.concatenate(cls, 0),
            "instances": Instances.concatenate(instances, axis=0),
            "mosaic_border": self.border,
        }
        final_labels["instances"].clip(imgsz, imgsz)
        good = final_labels["instances"].remove_zero_area_boxes()
        final_labels["cls"] = final_labels["cls"][good]
        if "texts" in mosaic_labels[0]:
            final_labels["texts"] = mosaic_labels[0]["texts"]
        return final_labels


class MixUp(BaseMixTransform):
    """

    Applies MixUp augmentation to image datasets.



    This class implements the MixUp augmentation technique as described in the paper "mixup: Beyond Empirical Risk

    Minimization" (https://arxiv.org/abs/1710.09412). MixUp combines two images and their labels using a random weight.



    Attributes:

        dataset (Any): The dataset to which MixUp augmentation will be applied.

        pre_transform (Callable | None): Optional transform to apply before MixUp.

        p (float): Probability of applying MixUp augmentation.



    Methods:

        get_indexes: Returns a random index from the dataset.

        _mix_transform: Applies MixUp augmentation to the input labels.



    Examples:

        >>> from ultralytics.data.augment import MixUp

        >>> dataset = YourDataset(...)  # Your image dataset

        >>> mixup = MixUp(dataset, p=0.5)

        >>> augmented_labels = mixup(original_labels)

    """

    def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
        """

        Initializes the MixUp augmentation object.



        MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel

        values and labels. This implementation is designed for use with the Ultralytics YOLO framework.



        Args:

            dataset (Any): The dataset to which MixUp augmentation will be applied.

            pre_transform (Callable | None): Optional transform to apply to images before MixUp.

            p (float): Probability of applying MixUp augmentation to an image. Must be in the range [0, 1].



        Examples:

            >>> from ultralytics.data.dataset import YOLODataset

            >>> dataset = YOLODataset("path/to/data.yaml")

            >>> mixup = MixUp(dataset, pre_transform=None, p=0.5)

        """
        super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)

    def get_indexes(self):
        """

        Get a random index from the dataset.



        This method returns a single random index from the dataset, which is used to select an image for MixUp

        augmentation.



        Returns:

            (int): A random integer index within the range of the dataset length.



        Examples:

            >>> mixup = MixUp(dataset)

            >>> index = mixup.get_indexes()

            >>> print(index)

            42

        """
        return random.randint(0, len(self.dataset) - 1)

    def _mix_transform(self, labels):
        """

        Applies MixUp augmentation to the input labels.



        This method implements the MixUp augmentation technique as described in the paper

        "mixup: Beyond Empirical Risk Minimization" (https://arxiv.org/abs/1710.09412).



        Args:

            labels (Dict): A dictionary containing the original image and label information.



        Returns:

            (Dict): A dictionary containing the mixed-up image and combined label information.



        Examples:

            >>> mixer = MixUp(dataset)

            >>> mixed_labels = mixer._mix_transform(labels)

        """
        r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
        labels2 = labels["mix_labels"][0]
        labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8)
        labels["instances"] = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0)
        labels["cls"] = np.concatenate([labels["cls"], labels2["cls"]], 0)
        return labels


class RandomPerspective:
    """

    Implements random perspective and affine transformations on images and corresponding annotations.



    This class applies random rotations, translations, scaling, shearing, and perspective transformations

    to images and their associated bounding boxes, segments, and keypoints. It can be used as part of an

    augmentation pipeline for object detection and instance segmentation tasks.



    Attributes:

        degrees (float): Maximum absolute degree range for random rotations.

        translate (float): Maximum translation as a fraction of the image size.

        scale (float): Scaling factor range, e.g., scale=0.1 means 0.9-1.1.

        shear (float): Maximum shear angle in degrees.

        perspective (float): Perspective distortion factor.

        border (Tuple[int, int]): Mosaic border size as (x, y).

        pre_transform (Callable | None): Optional transform to apply before the random perspective.



    Methods:

        affine_transform: Applies affine transformations to the input image.

        apply_bboxes: Transforms bounding boxes using the affine matrix.

        apply_segments: Transforms segments and generates new bounding boxes.

        apply_keypoints: Transforms keypoints using the affine matrix.

        __call__: Applies the random perspective transformation to images and annotations.

        box_candidates: Filters transformed bounding boxes based on size and aspect ratio.



    Examples:

        >>> transform = RandomPerspective(degrees=10, translate=0.1, scale=0.1, shear=10)

        >>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)

        >>> labels = {"img": image, "cls": np.array([0, 1]), "instances": Instances(...)}

        >>> result = transform(labels)

        >>> transformed_image = result["img"]

        >>> transformed_instances = result["instances"]

    """

    def __init__(

        self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None

    ):
        """

        Initializes RandomPerspective object with transformation parameters.



        This class implements random perspective and affine transformations on images and corresponding bounding boxes,

        segments, and keypoints. Transformations include rotation, translation, scaling, and shearing.



        Args:

            degrees (float): Degree range for random rotations.

            translate (float): Fraction of total width and height for random translation.

            scale (float): Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%.

            shear (float): Shear intensity (angle in degrees).

            perspective (float): Perspective distortion factor.

            border (Tuple[int, int]): Tuple specifying mosaic border (top/bottom, left/right).

            pre_transform (Callable | None): Function/transform to apply to the image before starting the random

                transformation.



        Examples:

            >>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)

            >>> result = transform(labels)  # Apply random perspective to labels

        """
        self.degrees = degrees
        self.translate = translate
        self.scale = scale
        self.shear = shear
        self.perspective = perspective
        self.border = border  # mosaic border
        self.pre_transform = pre_transform

    def affine_transform(self, img, border):
        """

        Applies a sequence of affine transformations centered around the image center.



        This function performs a series of geometric transformations on the input image, including

        translation, perspective change, rotation, scaling, and shearing. The transformations are

        applied in a specific order to maintain consistency.



        Args:

            img (np.ndarray): Input image to be transformed.

            border (Tuple[int, int]): Border dimensions for the transformed image.



        Returns:

            (Tuple[np.ndarray, np.ndarray, float]): A tuple containing:

                - np.ndarray: Transformed image.

                - np.ndarray: 3x3 transformation matrix.

                - float: Scale factor applied during the transformation.



        Examples:

            >>> import numpy as np

            >>> img = np.random.rand(100, 100, 3)

            >>> border = (10, 10)

            >>> transformed_img, matrix, scale = affine_transform(img, border)

        """
        # Center
        C = np.eye(3, dtype=np.float32)

        C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
        C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

        # Perspective
        P = np.eye(3, dtype=np.float32)
        P[2, 0] = random.uniform(-self.perspective, self.perspective)  # x perspective (about y)
        P[2, 1] = random.uniform(-self.perspective, self.perspective)  # y perspective (about x)

        # Rotation and Scale
        R = np.eye(3, dtype=np.float32)
        a = random.uniform(-self.degrees, self.degrees)
        # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
        s = random.uniform(1 - self.scale, 1 + self.scale)
        # s = 2 ** random.uniform(-scale, scale)
        R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

        # Shear
        S = np.eye(3, dtype=np.float32)
        S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # x shear (deg)
        S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # y shear (deg)

        # Translation
        T = np.eye(3, dtype=np.float32)
        T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0]  # x translation (pixels)
        T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1]  # y translation (pixels)

        # Combined rotation matrix
        M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
        # Affine image
        if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
            if self.perspective:
                img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
            else:  # affine
                img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
        return img, M, s

    def apply_bboxes(self, bboxes, M):
        """

        Apply affine transformation to bounding boxes.



        This function applies an affine transformation to a set of bounding boxes using the provided

        transformation matrix.



        Args:

            bboxes (torch.Tensor): Bounding boxes in xyxy format with shape (N, 4), where N is the number

                of bounding boxes.

            M (torch.Tensor): Affine transformation matrix with shape (3, 3).



        Returns:

            (torch.Tensor): Transformed bounding boxes in xyxy format with shape (N, 4).



        Examples:

            >>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]])

            >>> M = torch.eye(3)

            >>> transformed_bboxes = apply_bboxes(bboxes, M)

        """
        n = len(bboxes)
        if n == 0:
            return bboxes

        xy = np.ones((n * 4, 3), dtype=bboxes.dtype)
        xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
        xy = xy @ M.T  # transform
        xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine

        # Create new boxes
        x = xy[:, [0, 2, 4, 6]]
        y = xy[:, [1, 3, 5, 7]]
        return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T

    def apply_segments(self, segments, M):
        """

        Apply affine transformations to segments and generate new bounding boxes.



        This function applies affine transformations to input segments and generates new bounding boxes based on

        the transformed segments. It clips the transformed segments to fit within the new bounding boxes.



        Args:

            segments (np.ndarray): Input segments with shape (N, M, 2), where N is the number of segments and M is the

                number of points in each segment.

            M (np.ndarray): Affine transformation matrix with shape (3, 3).



        Returns:

            (Tuple[np.ndarray, np.ndarray]): A tuple containing:

                - New bounding boxes with shape (N, 4) in xyxy format.

                - Transformed and clipped segments with shape (N, M, 2).



        Examples:

            >>> segments = np.random.rand(10, 500, 2)  # 10 segments with 500 points each

            >>> M = np.eye(3)  # Identity transformation matrix

            >>> new_bboxes, new_segments = apply_segments(segments, M)

        """
        n, num = segments.shape[:2]
        if n == 0:
            return [], segments

        xy = np.ones((n * num, 3), dtype=segments.dtype)
        segments = segments.reshape(-1, 2)
        xy[:, :2] = segments
        xy = xy @ M.T  # transform
        xy = xy[:, :2] / xy[:, 2:3]
        segments = xy.reshape(n, -1, 2)
        bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
        segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3])
        segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4])
        return bboxes, segments

    def apply_keypoints(self, keypoints, M):
        """

        Applies affine transformation to keypoints.



        This method transforms the input keypoints using the provided affine transformation matrix. It handles

        perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image

        boundaries after transformation.



        Args:

            keypoints (np.ndarray): Array of keypoints with shape (N, 17, 3), where N is the number of instances,

                17 is the number of keypoints per instance, and 3 represents (x, y, visibility).

            M (np.ndarray): 3x3 affine transformation matrix.



        Returns:

            (np.ndarray): Transformed keypoints array with the same shape as input (N, 17, 3).



        Examples:

            >>> random_perspective = RandomPerspective()

            >>> keypoints = np.random.rand(5, 17, 3)  # 5 instances, 17 keypoints each

            >>> M = np.eye(3)  # Identity transformation

            >>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M)

        """
        n, nkpt = keypoints.shape[:2]
        if n == 0:
            return keypoints
        xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype)
        visible = keypoints[..., 2].reshape(n * nkpt, 1)
        xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2)
        xy = xy @ M.T  # transform
        xy = xy[:, :2] / xy[:, 2:3]  # perspective rescale or affine
        out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1])
        visible[out_mask] = 0
        return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3)

    def __call__(self, labels):
        """

        Applies random perspective and affine transformations to an image and its associated labels.



        This method performs a series of transformations including rotation, translation, scaling, shearing,

        and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments,

        and keypoints accordingly.



        Args:

            labels (Dict): A dictionary containing image data and annotations.

                Must include:

                    'img' (ndarray): The input image.

                    'cls' (ndarray): Class labels.

                    'instances' (Instances): Object instances with bounding boxes, segments, and keypoints.

                May include:

                    'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation.



        Returns:

            (Dict): Transformed labels dictionary containing:

                - 'img' (np.ndarray): The transformed image.

                - 'cls' (np.ndarray): Updated class labels.

                - 'instances' (Instances): Updated object instances.

                - 'resized_shape' (Tuple[int, int]): New image shape after transformation.



        Examples:

            >>> transform = RandomPerspective()

            >>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)

            >>> labels = {

            ...     "img": image,

            ...     "cls": np.array([0, 1, 2]),

            ...     "instances": Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]])),

            ... }

            >>> result = transform(labels)

            >>> assert result["img"].shape[:2] == result["resized_shape"]

        """
        if self.pre_transform and "mosaic_border" not in labels:
            labels = self.pre_transform(labels)
        labels.pop("ratio_pad", None)  # do not need ratio pad

        img = labels["img"]
        cls = labels["cls"]
        instances = labels.pop("instances")
        # Make sure the coord formats are right
        instances.convert_bbox(format="xyxy")
        instances.denormalize(*img.shape[:2][::-1])

        border = labels.pop("mosaic_border", self.border)
        self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2  # w, h
        # M is affine matrix
        # Scale for func:`box_candidates`
        img, M, scale = self.affine_transform(img, border)

        bboxes = self.apply_bboxes(instances.bboxes, M)

        segments = instances.segments
        keypoints = instances.keypoints
        # Update bboxes if there are segments.
        if len(segments):
            bboxes, segments = self.apply_segments(segments, M)

        if keypoints is not None:
            keypoints = self.apply_keypoints(keypoints, M)
        new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False)
        # Clip
        new_instances.clip(*self.size)

        # Filter instances
        instances.scale(scale_w=scale, scale_h=scale, bbox_only=True)
        # Make the bboxes have the same scale with new_bboxes
        i = self.box_candidates(
            box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10
        )
        labels["instances"] = new_instances[i]
        labels["cls"] = cls[i]
        labels["img"] = img
        labels["resized_shape"] = img.shape[:2]
        return labels

    def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
        """

        Compute candidate boxes for further processing based on size and aspect ratio criteria.



        This method compares boxes before and after augmentation to determine if they meet specified

        thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have

        been overly distorted or reduced by the augmentation process.



        Args:

            box1 (numpy.ndarray): Original boxes before augmentation, shape (4, N) where n is the

                number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates.

            box2 (numpy.ndarray): Augmented boxes after transformation, shape (4, N). Format is

                [x1, y1, x2, y2] in absolute coordinates.

            wh_thr (float): Width and height threshold in pixels. Boxes smaller than this in either

                dimension are rejected.

            ar_thr (float): Aspect ratio threshold. Boxes with an aspect ratio greater than this

                value are rejected.

            area_thr (float): Area ratio threshold. Boxes with an area ratio (new/old) less than

                this value are rejected.

            eps (float): Small epsilon value to prevent division by zero.



        Returns:

            (numpy.ndarray): Boolean array of shape (n,) indicating which boxes are candidates.

                True values correspond to boxes that meet all criteria.



        Examples:

            >>> random_perspective = RandomPerspective()

            >>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T

            >>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T

            >>> candidates = random_perspective.box_candidates(box1, box2)

            >>> print(candidates)

            [True True]

        """
        w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
        w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
        ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
        return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates


class RandomHSV:
    """

    Randomly adjusts the Hue, Saturation, and Value (HSV) channels of an image.



    This class applies random HSV augmentation to images within predefined limits set by hgain, sgain, and vgain.



    Attributes:

        hgain (float): Maximum variation for hue. Range is typically [0, 1].

        sgain (float): Maximum variation for saturation. Range is typically [0, 1].

        vgain (float): Maximum variation for value. Range is typically [0, 1].



    Methods:

        __call__: Applies random HSV augmentation to an image.



    Examples:

        >>> import numpy as np

        >>> from ultralytics.data.augment import RandomHSV

        >>> augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)

        >>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)

        >>> labels = {"img": image}

        >>> augmented_labels = augmenter(labels)

        >>> augmented_image = augmented_labels["img"]

    """

    def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
        """

        Initializes the RandomHSV object for random HSV (Hue, Saturation, Value) augmentation.



        This class applies random adjustments to the HSV channels of an image within specified limits.



        Args:

            hgain (float): Maximum variation for hue. Should be in the range [0, 1].

            sgain (float): Maximum variation for saturation. Should be in the range [0, 1].

            vgain (float): Maximum variation for value. Should be in the range [0, 1].



        Examples:

            >>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)

            >>> augmented_image = hsv_aug(image)

        """
        self.hgain = hgain
        self.sgain = sgain
        self.vgain = vgain

    def __call__(self, labels):
        """

        Applies random HSV augmentation to an image within predefined limits.



        This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels.

        The adjustments are made within the limits set by hgain, sgain, and vgain during initialization.



        Args:

            labels (Dict): A dictionary containing image data and metadata. Must include an 'img' key with

                the image as a numpy array.



        Returns:

            (None): The function modifies the input 'labels' dictionary in-place, updating the 'img' key

                with the HSV-augmented image.



        Examples:

            >>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)

            >>> labels = {"img": np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)}

            >>> hsv_augmenter(labels)

            >>> augmented_img = labels["img"]

        """
        img = labels["img"]
        if self.hgain or self.sgain or self.vgain:
            r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1  # random gains
            hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
            dtype = img.dtype  # uint8

            x = np.arange(0, 256, dtype=r.dtype)
            lut_hue = ((x * r[0]) % 180).astype(dtype)
            lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
            lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

            im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
            cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed
        return labels


class RandomFlip:
    """

    Applies a random horizontal or vertical flip to an image with a given probability.



    This class performs random image flipping and updates corresponding instance annotations such as

    bounding boxes and keypoints.



    Attributes:

        p (float): Probability of applying the flip. Must be between 0 and 1.

        direction (str): Direction of flip, either 'horizontal' or 'vertical'.

        flip_idx (array-like): Index mapping for flipping keypoints, if applicable.



    Methods:

        __call__: Applies the random flip transformation to an image and its annotations.



    Examples:

        >>> transform = RandomFlip(p=0.5, direction="horizontal")

        >>> result = transform({"img": image, "instances": instances})

        >>> flipped_image = result["img"]

        >>> flipped_instances = result["instances"]

    """

    def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None:
        """

        Initializes the RandomFlip class with probability and direction.



        This class applies a random horizontal or vertical flip to an image with a given probability.

        It also updates any instances (bounding boxes, keypoints, etc.) accordingly.



        Args:

            p (float): The probability of applying the flip. Must be between 0 and 1.

            direction (str): The direction to apply the flip. Must be 'horizontal' or 'vertical'.

            flip_idx (List[int] | None): Index mapping for flipping keypoints, if any.



        Raises:

            AssertionError: If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1.



        Examples:

            >>> flip = RandomFlip(p=0.5, direction="horizontal")

            >>> flip = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4])

        """
        assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}"
        assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."

        self.p = p
        self.direction = direction
        self.flip_idx = flip_idx

    def __call__(self, labels):
        """

        Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.



        This method randomly flips the input image either horizontally or vertically based on the initialized

        probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to

        match the flipped image.



        Args:

            labels (Dict): A dictionary containing the following keys:

                'img' (numpy.ndarray): The image to be flipped.

                'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and

                    optionally keypoints.



        Returns:

            (Dict): The same dictionary with the flipped image and updated instances:

                'img' (numpy.ndarray): The flipped image.

                'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image.



        Examples:

            >>> labels = {"img": np.random.rand(640, 640, 3), "instances": Instances(...)}

            >>> random_flip = RandomFlip(p=0.5, direction="horizontal")

            >>> flipped_labels = random_flip(labels)

        """
        img = labels["img"]
        instances = labels.pop("instances")
        instances.convert_bbox(format="xywh")
        h, w = img.shape[:2]
        h = 1 if instances.normalized else h
        w = 1 if instances.normalized else w

        # Flip up-down
        if self.direction == "vertical" and random.random() < self.p:
            img = np.flipud(img)
            instances.flipud(h)
        if self.direction == "horizontal" and random.random() < self.p:
            img = np.fliplr(img)
            instances.fliplr(w)
            # For keypoints
            if self.flip_idx is not None and instances.keypoints is not None:
                instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :])
        labels["img"] = np.ascontiguousarray(img)
        labels["instances"] = instances
        return labels


class LetterBox:
    """

    Resize image and padding for detection, instance segmentation, pose.



    This class resizes and pads images to a specified shape while preserving aspect ratio. It also updates

    corresponding labels and bounding boxes.



    Attributes:

        new_shape (tuple): Target shape (height, width) for resizing.

        auto (bool): Whether to use minimum rectangle.

        scaleFill (bool): Whether to stretch the image to new_shape.

        scaleup (bool): Whether to allow scaling up. If False, only scale down.

        stride (int): Stride for rounding padding.

        center (bool): Whether to center the image or align to top-left.



    Methods:

        __call__: Resize and pad image, update labels and bounding boxes.



    Examples:

        >>> transform = LetterBox(new_shape=(640, 640))

        >>> result = transform(labels)

        >>> resized_img = result["img"]

        >>> updated_instances = result["instances"]

    """

    def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):
        """

        Initialize LetterBox object for resizing and padding images.



        This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation

        tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing.



        Args:

            new_shape (Tuple[int, int]): Target size (height, width) for the resized image.

            auto (bool): If True, use minimum rectangle to resize. If False, use new_shape directly.

            scaleFill (bool): If True, stretch the image to new_shape without padding.

            scaleup (bool): If True, allow scaling up. If False, only scale down.

            center (bool): If True, center the placed image. If False, place image in top-left corner.

            stride (int): Stride of the model (e.g., 32 for YOLOv5).



        Attributes:

            new_shape (Tuple[int, int]): Target size for the resized image.

            auto (bool): Flag for using minimum rectangle resizing.

            scaleFill (bool): Flag for stretching image without padding.

            scaleup (bool): Flag for allowing upscaling.

            stride (int): Stride value for ensuring image size is divisible by stride.



        Examples:

            >>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32)

            >>> resized_img = letterbox(original_img)

        """
        self.new_shape = new_shape
        self.auto = auto
        self.scaleFill = scaleFill
        self.scaleup = scaleup
        self.stride = stride
        self.center = center  # Put the image in the middle or top-left

    def __call__(self, labels=None, image=None):
        """

        Resizes and pads an image for object detection, instance segmentation, or pose estimation tasks.



        This method applies letterboxing to the input image, which involves resizing the image while maintaining its

        aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly.



        Args:

            labels (Dict | None): A dictionary containing image data and associated labels, or empty dict if None.

            image (np.ndarray | None): The input image as a numpy array. If None, the image is taken from 'labels'.



        Returns:

            (Dict | Tuple): If 'labels' is provided, returns an updated dictionary with the resized and padded image,

                updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized

                and padded image, and a tuple of (ratio, (left_pad, top_pad)).



        Examples:

            >>> letterbox = LetterBox(new_shape=(640, 640))

            >>> result = letterbox(labels={"img": np.zeros((480, 640, 3)), "instances": Instances(...)})

            >>> resized_img = result["img"]

            >>> updated_instances = result["instances"]

        """
        if labels is None:
            labels = {}
        img = labels.get("img") if image is None else image
        shape = img.shape[:2]  # current shape [height, width]
        new_shape = labels.pop("rect_shape", self.new_shape)
        if isinstance(new_shape, int):
            new_shape = (new_shape, new_shape)

        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        if not self.scaleup:  # only scale down, do not scale up (for better val mAP)
            r = min(r, 1.0)

        # Compute padding
        ratio = r, r  # width, height ratios
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
        if self.auto:  # minimum rectangle
            dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride)  # wh padding
        elif self.scaleFill:  # stretch
            dw, dh = 0.0, 0.0
            new_unpad = (new_shape[1], new_shape[0])
            ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

        if self.center:
            dw /= 2  # divide padding into 2 sides
            dh /= 2

        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
        img = cv2.copyMakeBorder(
            img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
        )  # add border
        if labels.get("ratio_pad"):
            labels["ratio_pad"] = (labels["ratio_pad"], (left, top))  # for evaluation

        if len(labels):
            labels = self._update_labels(labels, ratio, dw, dh)
            labels["img"] = img
            labels["resized_shape"] = new_shape
            return labels
        else:
            return img

    def _update_labels(self, labels, ratio, padw, padh):
        """

        Updates labels after applying letterboxing to an image.



        This method modifies the bounding box coordinates of instances in the labels

        to account for resizing and padding applied during letterboxing.



        Args:

            labels (Dict): A dictionary containing image labels and instances.

            ratio (Tuple[float, float]): Scaling ratios (width, height) applied to the image.

            padw (float): Padding width added to the image.

            padh (float): Padding height added to the image.



        Returns:

            (Dict): Updated labels dictionary with modified instance coordinates.



        Examples:

            >>> letterbox = LetterBox(new_shape=(640, 640))

            >>> labels = {"instances": Instances(...)}

            >>> ratio = (0.5, 0.5)

            >>> padw, padh = 10, 20

            >>> updated_labels = letterbox._update_labels(labels, ratio, padw, padh)

        """
        labels["instances"].convert_bbox(format="xyxy")
        labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
        labels["instances"].scale(*ratio)
        labels["instances"].add_padding(padw, padh)
        return labels


class CopyPaste(BaseMixTransform):
    """

    CopyPaste class for applying Copy-Paste augmentation to image datasets.



    This class implements the Copy-Paste augmentation technique as described in the paper "Simple Copy-Paste is a Strong

    Data Augmentation Method for Instance Segmentation" (https://arxiv.org/abs/2012.07177). It combines objects from

    different images to create new training samples.



    Attributes:

        dataset (Any): The dataset to which Copy-Paste augmentation will be applied.

        pre_transform (Callable | None): Optional transform to apply before Copy-Paste.

        p (float): Probability of applying Copy-Paste augmentation.



    Methods:

        get_indexes: Returns a random index from the dataset.

        _mix_transform: Applies Copy-Paste augmentation to the input labels.

        __call__: Applies the Copy-Paste transformation to images and annotations.



    Examples:

        >>> from ultralytics.data.augment import CopyPaste

        >>> dataset = YourDataset(...)  # Your image dataset

        >>> copypaste = CopyPaste(dataset, p=0.5)

        >>> augmented_labels = copypaste(original_labels)

    """

    def __init__(self, dataset=None, pre_transform=None, p=0.5, mode="flip") -> None:
        """Initializes CopyPaste object with dataset, pre_transform, and probability of applying MixUp."""
        super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
        assert mode in {"flip", "mixup"}, f"Expected `mode` to be `flip` or `mixup`, but got {mode}."
        self.mode = mode

    def get_indexes(self):
        """Returns a list of random indexes from the dataset for CopyPaste augmentation."""
        return random.randint(0, len(self.dataset) - 1)

    def _mix_transform(self, labels):
        """Applies Copy-Paste augmentation to combine objects from another image into the current image."""
        labels2 = labels["mix_labels"][0]
        return self._transform(labels, labels2)

    def __call__(self, labels):
        """Applies Copy-Paste augmentation to an image and its labels."""
        if len(labels["instances"].segments) == 0 or self.p == 0:
            return labels
        if self.mode == "flip":
            return self._transform(labels)

        # Get index of one or three other images
        indexes = self.get_indexes()
        if isinstance(indexes, int):
            indexes = [indexes]

        # Get images information will be used for Mosaic or MixUp
        mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]

        if self.pre_transform is not None:
            for i, data in enumerate(mix_labels):
                mix_labels[i] = self.pre_transform(data)
        labels["mix_labels"] = mix_labels

        # Update cls and texts
        labels = self._update_label_text(labels)
        # Mosaic or MixUp
        labels = self._mix_transform(labels)
        labels.pop("mix_labels", None)
        return labels

    def _transform(self, labels1, labels2={}):
        """Applies Copy-Paste augmentation to combine objects from another image into the current image."""
        im = labels1["img"]
        cls = labels1["cls"]
        h, w = im.shape[:2]
        instances = labels1.pop("instances")
        instances.convert_bbox(format="xyxy")
        instances.denormalize(w, h)

        im_new = np.zeros(im.shape, np.uint8)
        instances2 = labels2.pop("instances", None)
        if instances2 is None:
            instances2 = deepcopy(instances)
            instances2.fliplr(w)
        ioa = bbox_ioa(instances2.bboxes, instances.bboxes)  # intersection over area, (N, M)
        indexes = np.nonzero((ioa < 0.30).all(1))[0]  # (N, )
        n = len(indexes)
        sorted_idx = np.argsort(ioa.max(1)[indexes])
        indexes = indexes[sorted_idx]
        for j in indexes[: round(self.p * n)]:
            cls = np.concatenate((cls, labels2.get("cls", cls)[[j]]), axis=0)
            instances = Instances.concatenate((instances, instances2[[j]]), axis=0)
            cv2.drawContours(im_new, instances2.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)

        result = labels2.get("img", cv2.flip(im, 1))  # augment segments
        i = im_new.astype(bool)
        im[i] = result[i]

        labels1["img"] = im
        labels1["cls"] = cls
        labels1["instances"] = instances
        return labels1


class Albumentations:
    """

    Albumentations transformations for image augmentation.



    This class applies various image transformations using the Albumentations library. It includes operations such as

    Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization (CLAHE), random changes

    in brightness and contrast, RandomGamma, and image quality reduction through compression.



    Attributes:

        p (float): Probability of applying the transformations.

        transform (albumentations.Compose): Composed Albumentations transforms.

        contains_spatial (bool): Indicates if the transforms include spatial operations.



    Methods:

        __call__: Applies the Albumentations transformations to the input labels.



    Examples:

        >>> transform = Albumentations(p=0.5)

        >>> augmented_labels = transform(labels)



    Notes:

        - The Albumentations package must be installed to use this class.

        - If the package is not installed or an error occurs during initialization, the transform will be set to None.

        - Spatial transforms are handled differently and require special processing for bounding boxes.

    """

    def __init__(self, p=1.0):
        """

        Initialize the Albumentations transform object for YOLO bbox formatted parameters.



        This class applies various image augmentations using the Albumentations library, including Blur, Median Blur,

        conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and

        contrast, RandomGamma, and image quality reduction through compression.



        Args:

            p (float): Probability of applying the augmentations. Must be between 0 and 1.



        Attributes:

            p (float): Probability of applying the augmentations.

            transform (albumentations.Compose): Composed Albumentations transforms.

            contains_spatial (bool): Indicates if the transforms include spatial transformations.



        Raises:

            ImportError: If the Albumentations package is not installed.

            Exception: For any other errors during initialization.



        Examples:

            >>> transform = Albumentations(p=0.5)

            >>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)

            >>> augmented_image = augmented["image"]

            >>> augmented_bboxes = augmented["bboxes"]



        Notes:

            - Requires Albumentations version 1.0.3 or higher.

            - Spatial transforms are handled differently to ensure bbox compatibility.

            - Some transforms are applied with very low probability (0.01) by default.

        """
        self.p = p
        self.transform = None
        prefix = colorstr("albumentations: ")

        try:
            import albumentations as A

            check_version(A.__version__, "1.0.3", hard=True)  # version requirement

            # List of possible spatial transforms
            spatial_transforms = {
                "Affine",
                "BBoxSafeRandomCrop",
                "CenterCrop",
                "CoarseDropout",
                "Crop",
                "CropAndPad",
                "CropNonEmptyMaskIfExists",
                "D4",
                "ElasticTransform",
                "Flip",
                "GridDistortion",
                "GridDropout",
                "HorizontalFlip",
                "Lambda",
                "LongestMaxSize",
                "MaskDropout",
                "MixUp",
                "Morphological",
                "NoOp",
                "OpticalDistortion",
                "PadIfNeeded",
                "Perspective",
                "PiecewiseAffine",
                "PixelDropout",
                "RandomCrop",
                "RandomCropFromBorders",
                "RandomGridShuffle",
                "RandomResizedCrop",
                "RandomRotate90",
                "RandomScale",
                "RandomSizedBBoxSafeCrop",
                "RandomSizedCrop",
                "Resize",
                "Rotate",
                "SafeRotate",
                "ShiftScaleRotate",
                "SmallestMaxSize",
                "Transpose",
                "VerticalFlip",
                "XYMasking",
            }  # from https://albumentations.ai/docs/getting_started/transforms_and_targets/#spatial-level-transforms

            # Transforms
            T = [
                A.Blur(p=0.01),
                A.MedianBlur(p=0.01),
                A.ToGray(p=0.01),
                A.CLAHE(p=0.01),
                A.RandomBrightnessContrast(p=0.0),
                A.RandomGamma(p=0.0),
                A.ImageCompression(quality_lower=75, p=0.0),
            ]

            # Compose transforms
            self.contains_spatial = any(transform.__class__.__name__ in spatial_transforms for transform in T)
            self.transform = (
                A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
                if self.contains_spatial
                else A.Compose(T)
            )
            LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
        except ImportError:  # package not installed, skip
            pass
        except Exception as e:
            LOGGER.info(f"{prefix}{e}")

    def __call__(self, labels):
        """

        Applies Albumentations transformations to input labels.



        This method applies a series of image augmentations using the Albumentations library. It can perform both

        spatial and non-spatial transformations on the input image and its corresponding labels.



        Args:

            labels (Dict): A dictionary containing image data and annotations. Expected keys are:

                - 'img': numpy.ndarray representing the image

                - 'cls': numpy.ndarray of class labels

                - 'instances': object containing bounding boxes and other instance information



        Returns:

            (Dict): The input dictionary with augmented image and updated annotations.



        Examples:

            >>> transform = Albumentations(p=0.5)

            >>> labels = {

            ...     "img": np.random.rand(640, 640, 3),

            ...     "cls": np.array([0, 1]),

            ...     "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]])),

            ... }

            >>> augmented = transform(labels)

            >>> assert augmented["img"].shape == (640, 640, 3)



        Notes:

            - The method applies transformations with probability self.p.

            - Spatial transforms update bounding boxes, while non-spatial transforms only modify the image.

            - Requires the Albumentations library to be installed.

        """
        if self.transform is None or random.random() > self.p:
            return labels

        if self.contains_spatial:
            cls = labels["cls"]
            if len(cls):
                im = labels["img"]
                labels["instances"].convert_bbox("xywh")
                labels["instances"].normalize(*im.shape[:2][::-1])
                bboxes = labels["instances"].bboxes
                # TODO: add supports of segments and keypoints
                new = self.transform(image=im, bboxes=bboxes, class_labels=cls)  # transformed
                if len(new["class_labels"]) > 0:  # skip update if no bbox in new im
                    labels["img"] = new["image"]
                    labels["cls"] = np.array(new["class_labels"])
                    bboxes = np.array(new["bboxes"], dtype=np.float32)
                labels["instances"].update(bboxes=bboxes)
        else:
            labels["img"] = self.transform(image=labels["img"])["image"]  # transformed

        return labels


class Format:
    """

    A class for formatting image annotations for object detection, instance segmentation, and pose estimation tasks.



    This class standardizes image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader.



    Attributes:

        bbox_format (str): Format for bounding boxes. Options are 'xywh' or 'xyxy'.

        normalize (bool): Whether to normalize bounding boxes.

        return_mask (bool): Whether to return instance masks for segmentation.

        return_keypoint (bool): Whether to return keypoints for pose estimation.

        return_obb (bool): Whether to return oriented bounding boxes.

        mask_ratio (int): Downsample ratio for masks.

        mask_overlap (bool): Whether to overlap masks.

        batch_idx (bool): Whether to keep batch indexes.

        bgr (float): The probability to return BGR images.



    Methods:

        __call__: Formats labels dictionary with image, classes, bounding boxes, and optionally masks and keypoints.

        _format_img: Converts image from Numpy array to PyTorch tensor.

        _format_segments: Converts polygon points to bitmap masks.



    Examples:

        >>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)

        >>> formatted_labels = formatter(labels)

        >>> img = formatted_labels["img"]

        >>> bboxes = formatted_labels["bboxes"]

        >>> masks = formatted_labels["masks"]

    """

    def __init__(

        self,

        bbox_format="xywh",

        normalize=True,

        return_mask=False,

        return_keypoint=False,

        return_obb=False,

        mask_ratio=4,

        mask_overlap=True,

        batch_idx=True,

        bgr=0.0,

    ):
        """

        Initializes the Format class with given parameters for image and instance annotation formatting.



        This class standardizes image and instance annotations for object detection, instance segmentation, and pose

        estimation tasks, preparing them for use in PyTorch DataLoader's `collate_fn`.



        Args:

            bbox_format (str): Format for bounding boxes. Options are 'xywh', 'xyxy', etc.

            normalize (bool): Whether to normalize bounding boxes to [0,1].

            return_mask (bool): If True, returns instance masks for segmentation tasks.

            return_keypoint (bool): If True, returns keypoints for pose estimation tasks.

            return_obb (bool): If True, returns oriented bounding boxes.

            mask_ratio (int): Downsample ratio for masks.

            mask_overlap (bool): If True, allows mask overlap.

            batch_idx (bool): If True, keeps batch indexes.

            bgr (float): Probability of returning BGR images instead of RGB.



        Attributes:

            bbox_format (str): Format for bounding boxes.

            normalize (bool): Whether bounding boxes are normalized.

            return_mask (bool): Whether to return instance masks.

            return_keypoint (bool): Whether to return keypoints.

            return_obb (bool): Whether to return oriented bounding boxes.

            mask_ratio (int): Downsample ratio for masks.

            mask_overlap (bool): Whether masks can overlap.

            batch_idx (bool): Whether to keep batch indexes.

            bgr (float): The probability to return BGR images.



        Examples:

            >>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False)

            >>> print(format.bbox_format)

            xyxy

        """
        self.bbox_format = bbox_format
        self.normalize = normalize
        self.return_mask = return_mask  # set False when training detection only
        self.return_keypoint = return_keypoint
        self.return_obb = return_obb
        self.mask_ratio = mask_ratio
        self.mask_overlap = mask_overlap
        self.batch_idx = batch_idx  # keep the batch indexes
        self.bgr = bgr

    def __call__(self, labels):
        """

        Formats image annotations for object detection, instance segmentation, and pose estimation tasks.



        This method standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch

        DataLoader. It processes the input labels dictionary, converting annotations to the specified format and

        applying normalization if required.



        Args:

            labels (Dict): A dictionary containing image and annotation data with the following keys:

                - 'img': The input image as a numpy array.

                - 'cls': Class labels for instances.

                - 'instances': An Instances object containing bounding boxes, segments, and keypoints.



        Returns:

            (Dict): A dictionary with formatted data, including:

                - 'img': Formatted image tensor.

                - 'cls': Class labels tensor.

                - 'bboxes': Bounding boxes tensor in the specified format.

                - 'masks': Instance masks tensor (if return_mask is True).

                - 'keypoints': Keypoints tensor (if return_keypoint is True).

                - 'batch_idx': Batch index tensor (if batch_idx is True).



        Examples:

            >>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)

            >>> labels = {"img": np.random.rand(640, 640, 3), "cls": np.array([0, 1]), "instances": Instances(...)}

            >>> formatted_labels = formatter(labels)

            >>> print(formatted_labels.keys())

        """
        img = labels.pop("img")
        h, w = img.shape[:2]
        cls = labels.pop("cls")
        instances = labels.pop("instances")
        instances.convert_bbox(format=self.bbox_format)
        instances.denormalize(w, h)
        nl = len(instances)

        if self.return_mask:
            if nl:
                masks, instances, cls = self._format_segments(instances, cls, w, h)
                masks = torch.from_numpy(masks)
            else:
                masks = torch.zeros(
                    1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio
                )
            labels["masks"] = masks
        labels["img"] = self._format_img(img)
        labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl)
        labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
        if self.return_keypoint:
            labels["keypoints"] = torch.from_numpy(instances.keypoints)
            if self.normalize:
                labels["keypoints"][..., 0] /= w
                labels["keypoints"][..., 1] /= h
        if self.return_obb:
            labels["bboxes"] = (
                xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5))
            )
        # NOTE: need to normalize obb in xywhr format for width-height consistency
        if self.normalize:
            labels["bboxes"][:, [0, 2]] /= w
            labels["bboxes"][:, [1, 3]] /= h
        # Then we can use collate_fn
        if self.batch_idx:
            labels["batch_idx"] = torch.zeros(nl)
        return labels

    def _format_img(self, img):
        """

        Formats an image for YOLO from a Numpy array to a PyTorch tensor.



        This function performs the following operations:

        1. Ensures the image has 3 dimensions (adds a channel dimension if needed).

        2. Transposes the image from HWC to CHW format.

        3. Optionally flips the color channels from RGB to BGR.

        4. Converts the image to a contiguous array.

        5. Converts the Numpy array to a PyTorch tensor.



        Args:

            img (np.ndarray): Input image as a Numpy array with shape (H, W, C) or (H, W).



        Returns:

            (torch.Tensor): Formatted image as a PyTorch tensor with shape (C, H, W).



        Examples:

            >>> import numpy as np

            >>> img = np.random.rand(100, 100, 3)

            >>> formatted_img = self._format_img(img)

            >>> print(formatted_img.shape)

            torch.Size([3, 100, 100])

        """
        if len(img.shape) < 3:
            img = np.expand_dims(img, -1)
        img = img.transpose(2, 0, 1)
        img = np.ascontiguousarray(img[::-1] if random.uniform(0, 1) > self.bgr else img)
        img = torch.from_numpy(img)
        return img

    def _format_segments(self, instances, cls, w, h):
        """

        Converts polygon segments to bitmap masks.



        Args:

            instances (Instances): Object containing segment information.

            cls (numpy.ndarray): Class labels for each instance.

            w (int): Width of the image.

            h (int): Height of the image.



        Returns:

            (tuple): Tuple containing:

                masks (numpy.ndarray): Bitmap masks with shape (N, H, W) or (1, H, W) if mask_overlap is True.

                instances (Instances): Updated instances object with sorted segments if mask_overlap is True.

                cls (numpy.ndarray): Updated class labels, sorted if mask_overlap is True.



        Notes:

            - If self.mask_overlap is True, masks are overlapped and sorted by area.

            - If self.mask_overlap is False, each mask is represented separately.

            - Masks are downsampled according to self.mask_ratio.

        """
        segments = instances.segments
        if self.mask_overlap:
            masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
            masks = masks[None]  # (640, 640) -> (1, 640, 640)
            instances = instances[sorted_idx]
            cls = cls[sorted_idx]
        else:
            masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio)

        return masks, instances, cls


class RandomLoadText:
    """

    Randomly samples positive and negative texts and updates class indices accordingly.



    This class is responsible for sampling texts from a given set of class texts, including both positive

    (present in the image) and negative (not present in the image) samples. It updates the class indices

    to reflect the sampled texts and can optionally pad the text list to a fixed length.



    Attributes:

        prompt_format (str): Format string for text prompts.

        neg_samples (Tuple[int, int]): Range for randomly sampling negative texts.

        max_samples (int): Maximum number of different text samples in one image.

        padding (bool): Whether to pad texts to max_samples.

        padding_value (str): The text used for padding when padding is True.



    Methods:

        __call__: Processes the input labels and returns updated classes and texts.



    Examples:

        >>> loader = RandomLoadText(prompt_format="Object: {}", neg_samples=(5, 10), max_samples=20)

        >>> labels = {"cls": [0, 1, 2], "texts": [["cat"], ["dog"], ["bird"]], "instances": [...]}

        >>> updated_labels = loader(labels)

        >>> print(updated_labels["texts"])

        ['Object: cat', 'Object: dog', 'Object: bird', 'Object: elephant', 'Object: car']

    """

    def __init__(

        self,

        prompt_format: str = "{}",

        neg_samples: Tuple[int, int] = (80, 80),

        max_samples: int = 80,

        padding: bool = False,

        padding_value: str = "",

    ) -> None:
        """

        Initializes the RandomLoadText class for randomly sampling positive and negative texts.



        This class is designed to randomly sample positive texts and negative texts, and update the class

        indices accordingly to the number of samples. It can be used for text-based object detection tasks.



        Args:

            prompt_format (str): Format string for the prompt. Default is '{}'. The format string should

                contain a single pair of curly braces {} where the text will be inserted.

            neg_samples (Tuple[int, int]): A range to randomly sample negative texts. The first integer

                specifies the minimum number of negative samples, and the second integer specifies the

                maximum. Default is (80, 80).

            max_samples (int): The maximum number of different text samples in one image. Default is 80.

            padding (bool): Whether to pad texts to max_samples. If True, the number of texts will always

                be equal to max_samples. Default is False.

            padding_value (str): The padding text to use when padding is True. Default is an empty string.



        Attributes:

            prompt_format (str): The format string for the prompt.

            neg_samples (Tuple[int, int]): The range for sampling negative texts.

            max_samples (int): The maximum number of text samples.

            padding (bool): Whether padding is enabled.

            padding_value (str): The value used for padding.



        Examples:

            >>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)

            >>> random_load_text.prompt_format

            'Object: {}'

            >>> random_load_text.neg_samples

            (50, 100)

            >>> random_load_text.max_samples

            120

        """
        self.prompt_format = prompt_format
        self.neg_samples = neg_samples
        self.max_samples = max_samples
        self.padding = padding
        self.padding_value = padding_value

    def __call__(self, labels: dict) -> dict:
        """

        Randomly samples positive and negative texts and updates class indices accordingly.



        This method samples positive texts based on the existing class labels in the image, and randomly

        selects negative texts from the remaining classes. It then updates the class indices to match the

        new sampled text order.



        Args:

            labels (Dict): A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys.



        Returns:

            (Dict): Updated labels dictionary with new 'cls' and 'texts' entries.



        Examples:

            >>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20)

            >>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]}

            >>> updated_labels = loader(labels)

        """
        assert "texts" in labels, "No texts found in labels."
        class_texts = labels["texts"]
        num_classes = len(class_texts)
        cls = np.asarray(labels.pop("cls"), dtype=int)
        pos_labels = np.unique(cls).tolist()

        if len(pos_labels) > self.max_samples:
            pos_labels = random.sample(pos_labels, k=self.max_samples)

        neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples))
        neg_labels = [i for i in range(num_classes) if i not in pos_labels]
        neg_labels = random.sample(neg_labels, k=neg_samples)

        sampled_labels = pos_labels + neg_labels
        random.shuffle(sampled_labels)

        label2ids = {label: i for i, label in enumerate(sampled_labels)}
        valid_idx = np.zeros(len(labels["instances"]), dtype=bool)
        new_cls = []
        for i, label in enumerate(cls.squeeze(-1).tolist()):
            if label not in label2ids:
                continue
            valid_idx[i] = True
            new_cls.append([label2ids[label]])
        labels["instances"] = labels["instances"][valid_idx]
        labels["cls"] = np.array(new_cls)

        # Randomly select one prompt when there's more than one prompts
        texts = []
        for label in sampled_labels:
            prompts = class_texts[label]
            assert len(prompts) > 0
            prompt = self.prompt_format.format(prompts[random.randrange(len(prompts))])
            texts.append(prompt)

        if self.padding:
            valid_labels = len(pos_labels) + len(neg_labels)
            num_padding = self.max_samples - valid_labels
            if num_padding > 0:
                texts += [self.padding_value] * num_padding

        labels["texts"] = texts
        return labels


def v8_transforms(dataset, imgsz, hyp, stretch=False):
    """

    Applies a series of image transformations for training.



    This function creates a composition of image augmentation techniques to prepare images for YOLO training.

    It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments.



    Args:

        dataset (Dataset): The dataset object containing image data and annotations.

        imgsz (int): The target image size for resizing.

        hyp (Dict): A dictionary of hyperparameters controlling various aspects of the transformations.

        stretch (bool): If True, applies stretching to the image. If False, uses LetterBox resizing.



    Returns:

        (Compose): A composition of image transformations to be applied to the dataset.



    Examples:

        >>> from ultralytics.data.dataset import YOLODataset

        >>> dataset = YOLODataset(img_path="path/to/images", imgsz=640)

        >>> hyp = {"mosaic": 1.0, "copy_paste": 0.5, "degrees": 10.0, "translate": 0.2, "scale": 0.9}

        >>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp)

        >>> augmented_data = transforms(dataset[0])

    """
    mosaic = Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic)
    affine = RandomPerspective(
        degrees=hyp.degrees,
        translate=hyp.translate,
        scale=hyp.scale,
        shear=hyp.shear,
        perspective=hyp.perspective,
        pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)),
    )

    pre_transform = Compose([mosaic, affine])
    if hyp.copy_paste_mode == "flip":
        pre_transform.insert(1, CopyPaste(p=hyp.copy_paste, mode=hyp.copy_paste_mode))
    else:
        pre_transform.append(
            CopyPaste(
                dataset,
                pre_transform=Compose([Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), affine]),
                p=hyp.copy_paste,
                mode=hyp.copy_paste_mode,
            )
        )
    flip_idx = dataset.data.get("flip_idx", [])  # for keypoints augmentation
    if dataset.use_keypoints:
        kpt_shape = dataset.data.get("kpt_shape", None)
        if len(flip_idx) == 0 and hyp.fliplr > 0.0:
            hyp.fliplr = 0.0
            LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'")
        elif flip_idx and (len(flip_idx) != kpt_shape[0]):
            raise ValueError(f"data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}")

    return Compose(
        [
            pre_transform,
            MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup),
            Albumentations(p=1.0),
            RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
            RandomFlip(direction="vertical", p=hyp.flipud),
            RandomFlip(direction="horizontal", p=hyp.fliplr, flip_idx=flip_idx),
        ]
    )  # transforms


# Classification augmentations -----------------------------------------------------------------------------------------
def classify_transforms(

    size=224,

    mean=DEFAULT_MEAN,

    std=DEFAULT_STD,

    interpolation="BILINEAR",

    crop_fraction: float = DEFAULT_CROP_FRACTION,

):
    """

    Creates a composition of image transforms for classification tasks.



    This function generates a sequence of torchvision transforms suitable for preprocessing images

    for classification models during evaluation or inference. The transforms include resizing,

    center cropping, conversion to tensor, and normalization.



    Args:

        size (int | tuple): The target size for the transformed image. If an int, it defines the shortest edge. If a

            tuple, it defines (height, width).

        mean (tuple): Mean values for each RGB channel used in normalization.

        std (tuple): Standard deviation values for each RGB channel used in normalization.

        interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.

        crop_fraction (float): Fraction of the image to be cropped.



    Returns:

        (torchvision.transforms.Compose): A composition of torchvision transforms.



    Examples:

        >>> transforms = classify_transforms(size=224)

        >>> img = Image.open("path/to/image.jpg")

        >>> transformed_img = transforms(img)

    """
    import torchvision.transforms as T  # scope for faster 'import ultralytics'

    if isinstance(size, (tuple, list)):
        assert len(size) == 2, f"'size' tuples must be length 2, not length {len(size)}"
        scale_size = tuple(math.floor(x / crop_fraction) for x in size)
    else:
        scale_size = math.floor(size / crop_fraction)
        scale_size = (scale_size, scale_size)

    # Aspect ratio is preserved, crops center within image, no borders are added, image is lost
    if scale_size[0] == scale_size[1]:
        # Simple case, use torchvision built-in Resize with the shortest edge mode (scalar size arg)
        tfl = [T.Resize(scale_size[0], interpolation=getattr(T.InterpolationMode, interpolation))]
    else:
        # Resize the shortest edge to matching target dim for non-square target
        tfl = [T.Resize(scale_size)]
    tfl.extend(
        [
            T.CenterCrop(size),
            T.ToTensor(),
            T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
        ]
    )
    return T.Compose(tfl)


# Classification training augmentations --------------------------------------------------------------------------------
def classify_augmentations(

    size=224,

    mean=DEFAULT_MEAN,

    std=DEFAULT_STD,

    scale=None,

    ratio=None,

    hflip=0.5,

    vflip=0.0,

    auto_augment=None,

    hsv_h=0.015,  # image HSV-Hue augmentation (fraction)

    hsv_s=0.4,  # image HSV-Saturation augmentation (fraction)

    hsv_v=0.4,  # image HSV-Value augmentation (fraction)

    force_color_jitter=False,

    erasing=0.0,

    interpolation="BILINEAR",

):
    """

    Creates a composition of image augmentation transforms for classification tasks.



    This function generates a set of image transformations suitable for training classification models. It includes

    options for resizing, flipping, color jittering, auto augmentation, and random erasing.



    Args:

        size (int): Target size for the image after transformations.

        mean (tuple): Mean values for normalization, one per channel.

        std (tuple): Standard deviation values for normalization, one per channel.

        scale (tuple | None): Range of size of the origin size cropped.

        ratio (tuple | None): Range of aspect ratio of the origin aspect ratio cropped.

        hflip (float): Probability of horizontal flip.

        vflip (float): Probability of vertical flip.

        auto_augment (str | None): Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None.

        hsv_h (float): Image HSV-Hue augmentation factor.

        hsv_s (float): Image HSV-Saturation augmentation factor.

        hsv_v (float): Image HSV-Value augmentation factor.

        force_color_jitter (bool): Whether to apply color jitter even if auto augment is enabled.

        erasing (float): Probability of random erasing.

        interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.



    Returns:

        (torchvision.transforms.Compose): A composition of image augmentation transforms.



    Examples:

        >>> transforms = classify_augmentations(size=224, auto_augment="randaugment")

        >>> augmented_image = transforms(original_image)

    """
    # Transforms to apply if Albumentations not installed
    import torchvision.transforms as T  # scope for faster 'import ultralytics'

    if not isinstance(size, int):
        raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)")
    scale = tuple(scale or (0.08, 1.0))  # default imagenet scale range
    ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0))  # default imagenet ratio range
    interpolation = getattr(T.InterpolationMode, interpolation)
    primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)]
    if hflip > 0.0:
        primary_tfl.append(T.RandomHorizontalFlip(p=hflip))
    if vflip > 0.0:
        primary_tfl.append(T.RandomVerticalFlip(p=vflip))

    secondary_tfl = []
    disable_color_jitter = False
    if auto_augment:
        assert isinstance(auto_augment, str), f"Provided argument should be string, but got type {type(auto_augment)}"
        # color jitter is typically disabled if AA/RA on,
        # this allows override without breaking old hparm cfgs
        disable_color_jitter = not force_color_jitter

        if auto_augment == "randaugment":
            if TORCHVISION_0_11:
                secondary_tfl.append(T.RandAugment(interpolation=interpolation))
            else:
                LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.')

        elif auto_augment == "augmix":
            if TORCHVISION_0_13:
                secondary_tfl.append(T.AugMix(interpolation=interpolation))
            else:
                LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.')

        elif auto_augment == "autoaugment":
            if TORCHVISION_0_10:
                secondary_tfl.append(T.AutoAugment(interpolation=interpolation))
            else:
                LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.')

        else:
            raise ValueError(
                f'Invalid auto_augment policy: {auto_augment}. Should be one of "randaugment", '
                f'"augmix", "autoaugment" or None'
            )

    if not disable_color_jitter:
        secondary_tfl.append(T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h))

    final_tfl = [
        T.ToTensor(),
        T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
        T.RandomErasing(p=erasing, inplace=True),
    ]

    return T.Compose(primary_tfl + secondary_tfl + final_tfl)


# NOTE: keep this class for backward compatibility
class ClassifyLetterBox:
    """

    A class for resizing and padding images for classification tasks.



    This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).

    It resizes and pads images to a specified size while maintaining the original aspect ratio.



    Attributes:

        h (int): Target height of the image.

        w (int): Target width of the image.

        auto (bool): If True, automatically calculates the short side using stride.

        stride (int): The stride value, used when 'auto' is True.



    Methods:

        __call__: Applies the letterbox transformation to an input image.



    Examples:

        >>> transform = ClassifyLetterBox(size=(640, 640), auto=False, stride=32)

        >>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)

        >>> result = transform(img)

        >>> print(result.shape)

        (640, 640, 3)

    """

    def __init__(self, size=(640, 640), auto=False, stride=32):
        """

        Initializes the ClassifyLetterBox object for image preprocessing.



        This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and

        pads images to a specified size while maintaining the original aspect ratio.



        Args:

            size (int | Tuple[int, int]): Target size for the letterboxed image. If an int, a square image of

                (size, size) is created. If a tuple, it should be (height, width).

            auto (bool): If True, automatically calculates the short side based on stride. Default is False.

            stride (int): The stride value, used when 'auto' is True. Default is 32.



        Attributes:

            h (int): Target height of the letterboxed image.

            w (int): Target width of the letterboxed image.

            auto (bool): Flag indicating whether to automatically calculate short side.

            stride (int): Stride value for automatic short side calculation.



        Examples:

            >>> transform = ClassifyLetterBox(size=224)

            >>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)

            >>> result = transform(img)

            >>> print(result.shape)

            (224, 224, 3)

        """
        super().__init__()
        self.h, self.w = (size, size) if isinstance(size, int) else size
        self.auto = auto  # pass max size integer, automatically solve for short side using stride
        self.stride = stride  # used with auto

    def __call__(self, im):
        """

        Resizes and pads an image using the letterbox method.



        This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio,

        then pads the resized image to match the target size.



        Args:

            im (numpy.ndarray): Input image as a numpy array with shape (H, W, C).



        Returns:

            (numpy.ndarray): Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are

                the target height and width respectively.



        Examples:

            >>> letterbox = ClassifyLetterBox(size=(640, 640))

            >>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8)

            >>> resized_image = letterbox(image)

            >>> print(resized_image.shape)

            (640, 640, 3)

        """
        imh, imw = im.shape[:2]
        r = min(self.h / imh, self.w / imw)  # ratio of new/old dimensions
        h, w = round(imh * r), round(imw * r)  # resized image dimensions

        # Calculate padding dimensions
        hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w)
        top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)

        # Create padded image
        im_out = np.full((hs, ws, 3), 114, dtype=im.dtype)
        im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
        return im_out


# NOTE: keep this class for backward compatibility
class CenterCrop:
    """

    Applies center cropping to images for classification tasks.



    This class performs center cropping on input images, resizing them to a specified size while maintaining the aspect

    ratio. It is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).



    Attributes:

        h (int): Target height of the cropped image.

        w (int): Target width of the cropped image.



    Methods:

        __call__: Applies the center crop transformation to an input image.



    Examples:

        >>> transform = CenterCrop(640)

        >>> image = np.random.randint(0, 255, (1080, 1920, 3), dtype=np.uint8)

        >>> cropped_image = transform(image)

        >>> print(cropped_image.shape)

        (640, 640, 3)

    """

    def __init__(self, size=640):
        """

        Initializes the CenterCrop object for image preprocessing.



        This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).

        It performs a center crop on input images to a specified size.



        Args:

            size (int | Tuple[int, int]): The desired output size of the crop. If size is an int, a square crop

                (size, size) is made. If size is a sequence like (h, w), it is used as the output size.



        Returns:

            (None): This method initializes the object and does not return anything.



        Examples:

            >>> transform = CenterCrop(224)

            >>> img = np.random.rand(300, 300, 3)

            >>> cropped_img = transform(img)

            >>> print(cropped_img.shape)

            (224, 224, 3)

        """
        super().__init__()
        self.h, self.w = (size, size) if isinstance(size, int) else size

    def __call__(self, im):
        """

        Applies center cropping to an input image.



        This method resizes and crops the center of the image using a letterbox method. It maintains the aspect

        ratio of the original image while fitting it into the specified dimensions.



        Args:

            im (numpy.ndarray | PIL.Image.Image): The input image as a numpy array of shape (H, W, C) or a

                PIL Image object.



        Returns:

            (numpy.ndarray): The center-cropped and resized image as a numpy array of shape (self.h, self.w, C).



        Examples:

            >>> transform = CenterCrop(size=224)

            >>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)

            >>> cropped_image = transform(image)

            >>> assert cropped_image.shape == (224, 224, 3)

        """
        if isinstance(im, Image.Image):  # convert from PIL to numpy array if required
            im = np.asarray(im)
        imh, imw = im.shape[:2]
        m = min(imh, imw)  # min dimension
        top, left = (imh - m) // 2, (imw - m) // 2
        return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)


# NOTE: keep this class for backward compatibility
class ToTensor:
    """

    Converts an image from a numpy array to a PyTorch tensor.



    This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).



    Attributes:

        half (bool): If True, converts the image to half precision (float16).



    Methods:

        __call__: Applies the tensor conversion to an input image.



    Examples:

        >>> transform = ToTensor(half=True)

        >>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)

        >>> tensor_img = transform(img)

        >>> print(tensor_img.shape, tensor_img.dtype)

        torch.Size([3, 640, 640]) torch.float16



    Notes:

        The input image is expected to be in BGR format with shape (H, W, C).

        The output tensor will be in RGB format with shape (C, H, W), normalized to [0, 1].

    """

    def __init__(self, half=False):
        """

        Initializes the ToTensor object for converting images to PyTorch tensors.



        This class is designed to be used as part of a transformation pipeline for image preprocessing in the

        Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option

        for half-precision (float16) conversion.



        Args:

            half (bool): If True, converts the tensor to half precision (float16). Default is False.



        Examples:

            >>> transform = ToTensor(half=True)

            >>> img = np.random.rand(640, 640, 3)

            >>> tensor_img = transform(img)

            >>> print(tensor_img.dtype)

            torch.float16

        """
        super().__init__()
        self.half = half

    def __call__(self, im):
        """

        Transforms an image from a numpy array to a PyTorch tensor.



        This method converts the input image from a numpy array to a PyTorch tensor, applying optional

        half-precision conversion and normalization. The image is transposed from HWC to CHW format and

        the color channels are reversed from BGR to RGB.



        Args:

            im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order.



        Returns:

            (torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized

                to [0, 1] with shape (C, H, W) in RGB order.



        Examples:

            >>> transform = ToTensor(half=True)

            >>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)

            >>> tensor_img = transform(img)

            >>> print(tensor_img.shape, tensor_img.dtype)

            torch.Size([3, 640, 640]) torch.float16

        """
        im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1])  # HWC to CHW -> BGR to RGB -> contiguous
        im = torch.from_numpy(im)  # to torch
        im = im.half() if self.half else im.float()  # uint8 to fp16/32
        im /= 255.0  # 0-255 to 0.0-1.0
        return im