File size: 37,725 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "YOLO11 Tutorial",
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "t6MPjfT5NrKQ"
      },
      "source": [
        "<div align=\"center\">\n",
        "\n",
        "  <a href=\"https://ultralytics.com/yolo\" target=\"_blank\">\n",
        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n",
        "\n",
        "  [δΈ­ζ–‡](https://docs.ultralytics.com/zh/) | [ν•œκ΅­μ–΄](https://docs.ultralytics.com/ko/) | [ζ—₯本θͺž](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [FranΓ§ais](https://docs.ultralytics.com/fr/) | [EspaΓ±ol](https://docs.ultralytics.com/es/) | [PortuguΓͺs](https://docs.ultralytics.com/pt/) | [TΓΌrkΓ§e](https://docs.ultralytics.com/tr/) | [TiαΊΏng Việt](https://docs.ultralytics.com/vi/) | [Ψ§Ω„ΨΉΨ±Ψ¨ΩŠΨ©](https://docs.ultralytics.com/ar/)\n",
        "\n",
        "  <a href=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml\"><img src=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg\" alt=\"Ultralytics CI\"></a>\n",
        "  <a href=\"https://console.paperspace.com/github/ultralytics/ultralytics\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"/></a>\n",
        "  <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
        "  <a href=\"https://www.kaggle.com/ultralytics/yolov8\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
        "\n",
        "  <a href=\"https://ultralytics.com/discord\"><img alt=\"Discord\" src=\"https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue\"></a>\n",
        "  <a href=\"https://community.ultralytics.com\"><img alt=\"Ultralytics Forums\" src=\"https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue\"></a>\n",
        "  <a href=\"https://reddit.com/r/ultralytics\"><img alt=\"Ultralytics Reddit\" src=\"https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue\"></a>\n",
        "\n",
        "Welcome to the Ultralytics YOLO11 πŸš€ notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLO11</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLO11 and understand its features and capabilities.\n",
        "\n",
        "YOLO11 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n",
        "\n",
        "We hope that the resources in this notebook will help you get the most out of YOLO11. Please browse the YOLO11 <a href=\"https://docs.ultralytics.com/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n",
        "\n",
        "</div>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7mGmQbAO5pQb"
      },
      "source": [
        "# Setup\n",
        "\n",
        "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware.\n",
        "\n",
        "[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "wbvMlHd_QwMG",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "2e992f9f-90bb-4668-de12-fed629975285"
      },
      "source": [
        "%pip install ultralytics\n",
        "import ultralytics\n",
        "ultralytics.checks()"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Ultralytics 8.3.2 πŸš€ Python-3.10.12 torch-2.4.1+cu121 CUDA:0 (Tesla T4, 15102MiB)\n",
            "Setup complete βœ… (2 CPUs, 12.7 GB RAM, 41.1/112.6 GB disk)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4JnkELT0cIJg"
      },
      "source": [
        "# 1. Predict\n",
        "\n",
        "YOLO11 may be used directly in the Command Line Interface (CLI) with a `yolo` command for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See a full list of available `yolo` [arguments](https://docs.ultralytics.com/usage/cfg/) and other details in the [YOLO11 Predict Docs](https://docs.ultralytics.com/modes/train/).\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "zR9ZbuQCH7FX",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "e3ebec6f-658a-4803-d80c-e07d12908767"
      },
      "source": [
        "# Run inference on an image with YOLO11n\n",
        "!yolo predict model=yolo11n.pt source='https://ultralytics.com/images/zidane.jpg'"
      ],
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt to 'yolo11n.pt'...\n",
            "100% 5.35M/5.35M [00:00<00:00, 72.7MB/s]\n",
            "Ultralytics 8.3.2 πŸš€ Python-3.10.12 torch-2.4.1+cu121 CUDA:0 (Tesla T4, 15102MiB)\n",
            "YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs\n",
            "\n",
            "Downloading https://ultralytics.com/images/zidane.jpg to 'zidane.jpg'...\n",
            "100% 49.2k/49.2k [00:00<00:00, 5.37MB/s]\n",
            "image 1/1 /content/zidane.jpg: 384x640 2 persons, 1 tie, 63.4ms\n",
            "Speed: 14.5ms preprocess, 63.4ms inference, 820.9ms postprocess per image at shape (1, 3, 384, 640)\n",
            "Results saved to \u001b[1mruns/detect/predict\u001b[0m\n",
            "πŸ’‘ Learn more at https://docs.ultralytics.com/modes/predict\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hkAzDWJ7cWTr"
      },
      "source": [
        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/212889447-69e5bdf1-5800-4e29-835e-2ed2336dede2.jpg\" width=\"600\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0eq1SMWl6Sfn"
      },
      "source": [
        "# 2. Val\n",
        "Validate a model's accuracy on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset's `val` or `test` splits. The latest YOLO11 [models](https://github.com/ultralytics/ultralytics#models) are downloaded automatically the first time they are used. See [YOLO11 Val Docs](https://docs.ultralytics.com/modes/val/) for more information."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "WQPtK1QYVaD_"
      },
      "source": [
        "# Download COCO val\n",
        "import torch\n",
        "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')  # download (780M - 5000 images)\n",
        "!unzip -q tmp.zip -d datasets && rm tmp.zip  # unzip"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "X58w8JLpMnjH",
        "outputId": "af2a5deb-029b-466d-96a4-bd3e406987fa",
        "colab": {
          "base_uri": "https://localhost:8080/"
        }
      },
      "source": [
        "# Validate YOLO11n on COCO8 val\n",
        "!yolo val model=yolo11n.pt data=coco8.yaml"
      ],
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Ultralytics 8.3.2 πŸš€ Python-3.10.12 torch-2.4.1+cu121 CUDA:0 (Tesla T4, 15102MiB)\n",
            "YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs\n",
            "\n",
            "Dataset 'coco8.yaml' images not found ⚠️, missing path '/content/datasets/coco8/images/val'\n",
            "Downloading https://ultralytics.com/assets/coco8.zip to '/content/datasets/coco8.zip'...\n",
            "100% 433k/433k [00:00<00:00, 15.8MB/s]\n",
            "Unzipping /content/datasets/coco8.zip to /content/datasets/coco8...: 100% 25/25 [00:00<00:00, 1188.35file/s]\n",
            "Dataset download success βœ… (1.4s), saved to \u001b[1m/content/datasets\u001b[0m\n",
            "\n",
            "Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytics/Arial.ttf'...\n",
            "100% 755k/755k [00:00<00:00, 17.7MB/s]\n",
            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco8/labels/val... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<00:00, 142.04it/s]\n",
            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco8/labels/val.cache\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100% 1/1 [00:04<00:00,  4.75s/it]\n",
            "                   all          4         17       0.57       0.85      0.847      0.632\n",
            "                person          3         10      0.557        0.6      0.585      0.272\n",
            "                   dog          1          1      0.548          1      0.995      0.697\n",
            "                 horse          1          2      0.531          1      0.995      0.674\n",
            "              elephant          1          2      0.371        0.5      0.516      0.256\n",
            "              umbrella          1          1      0.569          1      0.995      0.995\n",
            "          potted plant          1          1      0.847          1      0.995      0.895\n",
            "Speed: 1.0ms preprocess, 73.8ms inference, 0.0ms loss, 561.4ms postprocess per image\n",
            "Results saved to \u001b[1mruns/detect/val\u001b[0m\n",
            "πŸ’‘ Learn more at https://docs.ultralytics.com/modes/val\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ZY2VXXXu74w5"
      },
      "source": [
        "# 3. Train\n",
        "\n",
        "<p align=\"\"><a href=\"https://ultralytics.com/hub\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png\"/></a></p>\n",
        "\n",
        "Train YOLO11 on [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/), [Classify](https://docs.ultralytics.com/tasks/classify/) and [Pose](https://docs.ultralytics.com/tasks/pose/) datasets. See [YOLO11 Train Docs](https://docs.ultralytics.com/modes/train/) for more information."
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "#@title Select YOLO11 πŸš€ logger {run: 'auto'}\n",
        "logger = 'Comet' #@param ['Comet', 'TensorBoard']\n",
        "\n",
        "if logger == 'Comet':\n",
        "  %pip install -q comet_ml\n",
        "  import comet_ml; comet_ml.init()\n",
        "elif logger == 'TensorBoard':\n",
        "  %load_ext tensorboard\n",
        "  %tensorboard --logdir ."
      ],
      "metadata": {
        "id": "ktegpM42AooT"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "1NcFxRcFdJ_O",
        "outputId": "952f35f7-666f-4121-fbdf-2b3a33b28081",
        "colab": {
          "base_uri": "https://localhost:8080/"
        }
      },
      "source": [
        "# Train YOLO11n on COCO8 for 3 epochs\n",
        "!yolo train model=yolo11n.pt data=coco8.yaml epochs=3 imgsz=640"
      ],
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Ultralytics 8.3.2 πŸš€ Python-3.10.12 torch-2.4.1+cu121 CUDA:0 (Tesla T4, 15102MiB)\n",
            "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolo11n.pt, data=coco8.yaml, epochs=3, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train3, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train3\n",
            "\n",
            "                   from  n    params  module                                       arguments                     \n",
            "  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 \n",
            "  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                \n",
            "  2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]      \n",
            "  3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                \n",
            "  4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]     \n",
            "  5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              \n",
            "  6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]           \n",
            "  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              \n",
            "  8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]           \n",
            "  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 \n",
            " 10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]                 \n",
            " 11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          \n",
            " 12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           \n",
            " 13                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]          \n",
            " 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          \n",
            " 15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           \n",
            " 16                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]           \n",
            " 17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                \n",
            " 18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           \n",
            " 19                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]          \n",
            " 20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              \n",
            " 21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           \n",
            " 22                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]           \n",
            " 23        [16, 19, 22]  1    464912  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]          \n",
            "YOLO11n summary: 319 layers, 2,624,080 parameters, 2,624,064 gradients, 6.6 GFLOPs\n",
            "\n",
            "Transferred 499/499 items from pretrained weights\n",
            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/detect/train', view at http://localhost:6006/\n",
            "Freezing layer 'model.23.dfl.conv.weight'\n",
            "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks with YOLO11n...\n",
            "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed βœ…\n",
            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco8/labels/train.cache... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<?, ?it/s]\n",
            "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01, num_output_channels=3, method='weighted_average'), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco8/labels/val.cache... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<?, ?it/s]\n",
            "Plotting labels to runs/detect/train/labels.jpg... \n",
            "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n",
            "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.000119, momentum=0.9) with parameter groups 81 weight(decay=0.0), 88 weight(decay=0.0005), 87 bias(decay=0.0)\n",
            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mmodel graph visualization added βœ…\n",
            "Image sizes 640 train, 640 val\n",
            "Using 2 dataloader workers\n",
            "Logging results to \u001b[1mruns/detect/train\u001b[0m\n",
            "Starting training for 3 epochs...\n",
            "\n",
            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
            "        1/3     0.719G      1.004      3.249      1.367         30        640: 100% 1/1 [00:00<00:00,  1.16it/s]\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100% 1/1 [00:00<00:00,  5.07it/s]\n",
            "                   all          4         17       0.58       0.85      0.849      0.631\n",
            "\n",
            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
            "        2/3     0.715G       1.31      4.043      1.603         35        640: 100% 1/1 [00:00<00:00,  6.88it/s]\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100% 1/1 [00:00<00:00,  9.08it/s]\n",
            "                   all          4         17      0.581       0.85      0.851       0.63\n",
            "\n",
            "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
            "        3/3     0.692G      1.134      3.174      1.599         18        640: 100% 1/1 [00:00<00:00,  6.75it/s]\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100% 1/1 [00:00<00:00, 11.60it/s]\n",
            "                   all          4         17      0.582       0.85      0.855      0.632\n",
            "\n",
            "3 epochs completed in 0.003 hours.\n",
            "Optimizer stripped from runs/detect/train/weights/last.pt, 5.5MB\n",
            "Optimizer stripped from runs/detect/train/weights/best.pt, 5.5MB\n",
            "\n",
            "Validating runs/detect/train/weights/best.pt...\n",
            "Ultralytics 8.3.2 πŸš€ Python-3.10.12 torch-2.4.1+cu121 CUDA:0 (Tesla T4, 15102MiB)\n",
            "YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100% 1/1 [00:00<00:00, 23.42it/s]\n",
            "                   all          4         17      0.579       0.85      0.855      0.615\n",
            "                person          3         10      0.579        0.6      0.623      0.268\n",
            "                   dog          1          1      0.549          1      0.995      0.697\n",
            "                 horse          1          2      0.553          1      0.995      0.675\n",
            "              elephant          1          2      0.364        0.5      0.528      0.261\n",
            "              umbrella          1          1      0.571          1      0.995      0.895\n",
            "          potted plant          1          1      0.857          1      0.995      0.895\n",
            "Speed: 0.2ms preprocess, 4.3ms inference, 0.0ms loss, 1.2ms postprocess per image\n",
            "Results saved to \u001b[1mruns/detect/train\u001b[0m\n",
            "πŸ’‘ Learn more at https://docs.ultralytics.com/modes/train\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# 4. Export\n",
        "\n",
        "Export a YOLO11 model to any supported format below with the `format` argument, i.e. `format=onnx`. See [YOLO11 Export Docs](https://docs.ultralytics.com/modes/export/) for more information.\n",
        "\n",
        "- πŸ’‘ ProTip: Export to [ONNX](https://docs.ultralytics.com/integrations/onnx/) or [OpenVINO](https://docs.ultralytics.com/integrations/openvino/) for up to 3x CPU speedup.  \n",
        "- πŸ’‘ ProTip: Export to [TensorRT](https://docs.ultralytics.com/integrations/tensorrt/) for up to 5x GPU speedup.\n",
        "\n",
        "| Format                                                                   | `format` Argument | Model                     | Metadata | Arguments                                                            |\n",
        "|--------------------------------------------------------------------------|-------------------|---------------------------|----------|----------------------------------------------------------------------|\n",
        "| [PyTorch](https://pytorch.org/)                                          | -                 | `yolo11n.pt`              | βœ…        | -                                                                    |\n",
        "| [TorchScript](https://docs.ultralytics.com/integrations/torchscript)     | `torchscript`     | `yolo11n.torchscript`     | βœ…        | `imgsz`, `optimize`, `batch`                                         |\n",
        "| [ONNX](https://docs.ultralytics.com/integrations/onnx)                   | `onnx`            | `yolo11n.onnx`            | βœ…        | `imgsz`, `half`, `dynamic`, `simplify`, `opset`, `batch`             |\n",
        "| [OpenVINO](https://docs.ultralytics.com/integrations/openvino)           | `openvino`        | `yolo11n_openvino_model/` | βœ…        | `imgsz`, `half`, `int8`, `batch`                                     |\n",
        "| [TensorRT](https://docs.ultralytics.com/integrations/tensorrt)           | `engine`          | `yolo11n.engine`          | βœ…        | `imgsz`, `half`, `dynamic`, `simplify`, `workspace`, `int8`, `batch` |\n",
        "| [CoreML](https://docs.ultralytics.com/integrations/coreml)               | `coreml`          | `yolo11n.mlpackage`       | βœ…        | `imgsz`, `half`, `int8`, `nms`, `batch`                              |\n",
        "| [TF SavedModel](https://docs.ultralytics.com/integrations/tf-savedmodel) | `saved_model`     | `yolo11n_saved_model/`    | βœ…        | `imgsz`, `keras`, `int8`, `batch`                                    |\n",
        "| [TF GraphDef](https://docs.ultralytics.com/integrations/tf-graphdef)     | `pb`              | `yolo11n.pb`              | ❌        | `imgsz`, `batch`                                                     |\n",
        "| [TF Lite](https://docs.ultralytics.com/integrations/tflite)              | `tflite`          | `yolo11n.tflite`          | βœ…        | `imgsz`, `half`, `int8`, `batch`                                     |\n",
        "| [TF Edge TPU](https://docs.ultralytics.com/integrations/edge-tpu)        | `edgetpu`         | `yolo11n_edgetpu.tflite`  | βœ…        | `imgsz`                                                              |\n",
        "| [TF.js](https://docs.ultralytics.com/integrations/tfjs)                  | `tfjs`            | `yolo11n_web_model/`      | βœ…        | `imgsz`, `half`, `int8`, `batch`                                     |\n",
        "| [PaddlePaddle](https://docs.ultralytics.com/integrations/paddlepaddle)   | `paddle`          | `yolo11n_paddle_model/`   | βœ…        | `imgsz`, `batch`                                                     |\n",
        "| [NCNN](https://docs.ultralytics.com/integrations/ncnn)                   | `ncnn`            | `yolo11n_ncnn_model/`     | βœ…        | `imgsz`, `half`, `batch`                                             |"
      ],
      "metadata": {
        "id": "nPZZeNrLCQG6"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!yolo export model=yolo11n.pt format=torchscript"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "CYIjW4igCjqD",
        "outputId": "5357fa04-6749-4508-effe-8d4078533539"
      },
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Ultralytics 8.3.2 πŸš€ Python-3.10.12 torch-2.4.1+cu121 CPU (Intel Xeon 2.20GHz)\n",
            "YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs\n",
            "\n",
            "\u001b[34m\u001b[1mPyTorch:\u001b[0m starting from 'yolo11n.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (5.4 MB)\n",
            "\n",
            "\u001b[34m\u001b[1mTorchScript:\u001b[0m starting export with torch 2.4.1+cu121...\n",
            "\u001b[34m\u001b[1mTorchScript:\u001b[0m export success βœ… 2.4s, saved as 'yolo11n.torchscript' (10.5 MB)\n",
            "\n",
            "Export complete (4.2s)\n",
            "Results saved to \u001b[1m/content\u001b[0m\n",
            "Predict:         yolo predict task=detect model=yolo11n.torchscript imgsz=640  \n",
            "Validate:        yolo val task=detect model=yolo11n.torchscript imgsz=640 data=coco.yaml  \n",
            "Visualize:       https://netron.app\n",
            "πŸ’‘ Learn more at https://docs.ultralytics.com/modes/export\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# 5. Python Usage\n",
        "\n",
        "YOLO11 was reimagined using Python-first principles for the most seamless Python YOLO experience yet. YOLO11 models can be loaded from a trained checkpoint or created from scratch. Then methods are used to train, val, predict, and export the model. See detailed Python usage examples in the [YOLO11 Python Docs](https://docs.ultralytics.com/usage/python/)."
      ],
      "metadata": {
        "id": "kUMOQ0OeDBJG"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from ultralytics import YOLO\n",
        "\n",
        "# Load a model\n",
        "model = YOLO('yolo11n.yaml')  # build a new model from scratch\n",
        "model = YOLO('yolo11n.pt')  # load a pretrained model (recommended for training)\n",
        "\n",
        "# Use the model\n",
        "results = model.train(data='coco8.yaml', epochs=3)  # train the model\n",
        "results = model.val()  # evaluate model performance on the validation set\n",
        "results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image\n",
        "results = model.export(format='onnx')  # export the model to ONNX format"
      ],
      "metadata": {
        "id": "bpF9-vS_DAaf"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# 6. Tasks\n",
        "\n",
        "YOLO11 can train, val, predict and export models for the most common tasks in vision AI: [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/), [Classify](https://docs.ultralytics.com/tasks/classify/) and [Pose](https://docs.ultralytics.com/tasks/pose/). See [YOLO11 Tasks Docs](https://docs.ultralytics.com/tasks/) for more information.\n",
        "\n",
        "<br><img width=\"1024\" src=\"https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png\">\n"
      ],
      "metadata": {
        "id": "Phm9ccmOKye5"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 1. Detection\n",
        "\n",
        "YOLO11 _detection_ models have no suffix and are the default YOLO11 models, i.e. `yolo11n.pt` and are pretrained on COCO. See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for full details.\n"
      ],
      "metadata": {
        "id": "yq26lwpYK1lq"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Load YOLO11n, train it on COCO128 for 3 epochs and predict an image with it\n",
        "from ultralytics import YOLO\n",
        "\n",
        "model = YOLO('yolo11n.pt')  # load a pretrained YOLO detection model\n",
        "model.train(data='coco8.yaml', epochs=3)  # train the model\n",
        "model('https://ultralytics.com/images/bus.jpg')  # predict on an image"
      ],
      "metadata": {
        "id": "8Go5qqS9LbC5"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 2. Segmentation\n",
        "\n",
        "YOLO11 _segmentation_ models use the `-seg` suffix, i.e. `yolo11n-seg.pt` and are pretrained on COCO. See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for full details.\n"
      ],
      "metadata": {
        "id": "7ZW58jUzK66B"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Load YOLO11n-seg, train it on COCO128-seg for 3 epochs and predict an image with it\n",
        "from ultralytics import YOLO\n",
        "\n",
        "model = YOLO('yolo11n-seg.pt')  # load a pretrained YOLO segmentation model\n",
        "model.train(data='coco8-seg.yaml', epochs=3)  # train the model\n",
        "model('https://ultralytics.com/images/bus.jpg')  # predict on an image"
      ],
      "metadata": {
        "id": "WFPJIQl_L5HT"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 3. Classification\n",
        "\n",
        "YOLO11 _classification_ models use the `-cls` suffix, i.e. `yolo11n-cls.pt` and are pretrained on ImageNet. See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for full details.\n"
      ],
      "metadata": {
        "id": "ax3p94VNK9zR"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Load YOLO11n-cls, train it on mnist160 for 3 epochs and predict an image with it\n",
        "from ultralytics import YOLO\n",
        "\n",
        "model = YOLO('yolo11n-cls.pt')  # load a pretrained YOLO classification model\n",
        "model.train(data='mnist160', epochs=3)  # train the model\n",
        "model('https://ultralytics.com/images/bus.jpg')  # predict on an image"
      ],
      "metadata": {
        "id": "5q9Zu6zlL5rS"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 4. Pose\n",
        "\n",
        "YOLO11 _pose_ models use the `-pose` suffix, i.e. `yolo11n-pose.pt` and are pretrained on COCO Keypoints. See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for full details."
      ],
      "metadata": {
        "id": "SpIaFLiO11TG"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Load YOLO11n-pose, train it on COCO8-pose for 3 epochs and predict an image with it\n",
        "from ultralytics import YOLO\n",
        "\n",
        "model = YOLO('yolo11n-pose.pt')  # load a pretrained YOLO pose model\n",
        "model.train(data='coco8-pose.yaml', epochs=3)  # train the model\n",
        "model('https://ultralytics.com/images/bus.jpg')  # predict on an image"
      ],
      "metadata": {
        "id": "si4aKFNg19vX"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## 4. Oriented Bounding Boxes (OBB)\n",
        "\n",
        "YOLO11 _OBB_ models use the `-obb` suffix, i.e. `yolo11n-obb.pt` and are pretrained on the DOTA dataset. See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for full details."
      ],
      "metadata": {
        "id": "cf5j_T9-B5F0"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Load YOLO11n-obb, train it on DOTA8 for 3 epochs and predict an image with it\n",
        "from ultralytics import YOLO\n",
        "\n",
        "model = YOLO('yolo11n-obb.pt')  # load a pretrained YOLO OBB model\n",
        "model.train(data='coco8-dota.yaml', epochs=3)  # train the model\n",
        "model('https://ultralytics.com/images/bus.jpg')  # predict on an image"
      ],
      "metadata": {
        "id": "IJNKClOOB5YS"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IEijrePND_2I"
      },
      "source": [
        "# Appendix\n",
        "\n",
        "Additional content below."
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Pip install from source\n",
        "!pip install git+https://github.com/ultralytics/ultralytics@main"
      ],
      "metadata": {
        "id": "pIdE6i8C3LYp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Git clone and run tests on updates branch\n",
        "!git clone https://github.com/ultralytics/ultralytics -b main\n",
        "%pip install -qe ultralytics"
      ],
      "metadata": {
        "id": "uRKlwxSJdhd1"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Run tests (Git clone only)\n",
        "!pytest ultralytics/tests"
      ],
      "metadata": {
        "id": "GtPlh7mcCGZX"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Validate multiple models\n",
        "for x in 'nsmlx':\n",
        "  !yolo val model=yolo11{x}.pt data=coco.yaml"
      ],
      "metadata": {
        "id": "Wdc6t_bfzDDk"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}