File size: 11,297 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---

comments: true
description: Master instance segmentation using YOLO11. Learn how to detect, segment and outline objects in images with detailed guides and examples.
keywords: instance segmentation, YOLO11, object detection, image segmentation, machine learning, deep learning, computer vision, COCO dataset, Ultralytics
model_name: yolo11n-seg
---


# Instance Segmentation

<img width="1024" src="https://github.com/ultralytics/docs/releases/download/0/instance-segmentation-examples.avif" alt="Instance segmentation examples">

[Instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation) goes a step further than object detection and involves identifying individual objects in an image and segmenting them from the rest of the image.

The output of an instance segmentation model is a set of masks or contours that outline each object in the image, along with class labels and confidence scores for each object. Instance segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/o4Zd-IeMlSY?si=37nusCzDTd74Obsp"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Run Segmentation with Pre-Trained Ultralytics YOLO Model in Python.
</p>

!!! tip

    YOLO11 Segment models use the `-seg` suffix, i.e. `yolo11n-seg.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).


## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11)

YOLO11 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.

[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.

{% include "macros/yolo-seg-perf.md" %}

- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`

## Train

Train YOLO11n-seg on the COCO8-seg dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.

!!! example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolo11n-seg.yaml")  # build a new model from YAML

        model = YOLO("yolo11n-seg.pt")  # load a pretrained model (recommended for training)

        model = YOLO("yolo11n-seg.yaml").load("yolo11n.pt")  # build from YAML and transfer weights


        # Train the model

        results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)

        ```


    === "CLI"


        ```bash

        # Build a new model from YAML and start training from scratch

        yolo segment train data=coco8-seg.yaml model=yolo11n-seg.yaml epochs=100 imgsz=640


        # Start training from a pretrained *.pt model

        yolo segment train data=coco8-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640


        # Build a new model from YAML, transfer pretrained weights to it and start training

        yolo segment train data=coco8-seg.yaml model=yolo11n-seg.yaml pretrained=yolo11n-seg.pt epochs=100 imgsz=640

        ```


### Dataset format

YOLO segmentation dataset format can be found in detail in the [Dataset Guide](../datasets/segment/index.md). To convert your existing dataset from other formats (like COCO etc.) to YOLO format, please use [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) tool by Ultralytics.

## Val

Validate trained YOLO11n-seg model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the COCO8-seg dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.

!!! example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolo11n-seg.pt")  # load an official model

        model = YOLO("path/to/best.pt")  # load a custom model


        # Validate the model

        metrics = model.val()  # no arguments needed, dataset and settings remembered

        metrics.box.map  # map50-95(B)

        metrics.box.map50  # map50(B)

        metrics.box.map75  # map75(B)

        metrics.box.maps  # a list contains map50-95(B) of each category

        metrics.seg.map  # map50-95(M)

        metrics.seg.map50  # map50(M)

        metrics.seg.map75  # map75(M)

        metrics.seg.maps  # a list contains map50-95(M) of each category

        ```


    === "CLI"


        ```bash

        yolo segment val model=yolo11n-seg.pt  # val official model

        yolo segment val model=path/to/best.pt  # val custom model

        ```


## Predict

Use a trained YOLO11n-seg model to run predictions on images.

!!! example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolo11n-seg.pt")  # load an official model

        model = YOLO("path/to/best.pt")  # load a custom model


        # Predict with the model

        results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image

        ```


    === "CLI"


        ```bash

        yolo segment predict model=yolo11n-seg.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model

        yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

        ```


See full `predict` mode details in the [Predict](../modes/predict.md) page.

## Export

Export a YOLO11n-seg model to a different format like ONNX, CoreML, etc.

!!! example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolo11n-seg.pt")  # load an official model

        model = YOLO("path/to/best.pt")  # load a custom trained model


        # Export the model

        model.export(format="onnx")

        ```


    === "CLI"


        ```bash

        yolo export model=yolo11n-seg.pt format=onnx  # export official model

        yolo export model=path/to/best.pt format=onnx  # export custom trained model

        ```


Available YOLO11-seg export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolo11n-seg.onnx`. Usage examples are shown for your model after export completes.

{% include "macros/export-table.md" %}

See full `export` details in the [Export](../modes/export.md) page.

## FAQ

### How do I train a YOLO11 segmentation model on a custom dataset?

To train a YOLO11 segmentation model on a custom dataset, you first need to prepare your dataset in the YOLO segmentation format. You can use tools like [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) to convert datasets from other formats. Once your dataset is ready, you can train the model using Python or CLI commands:

!!! example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11 segment model

        model = YOLO("yolo11n-seg.pt")


        # Train the model

        results = model.train(data="path/to/your_dataset.yaml", epochs=100, imgsz=640)

        ```


    === "CLI"


        ```bash

        yolo segment train data=path/to/your_dataset.yaml model=yolo11n-seg.pt epochs=100 imgsz=640

        ```


Check the [Configuration](../usage/cfg.md) page for more available arguments.

### What is the difference between [object detection](https://www.ultralytics.com/glossary/object-detection) and instance segmentation in YOLO11?

Object detection identifies and localizes objects within an image by drawing bounding boxes around them, whereas instance segmentation not only identifies the bounding boxes but also delineates the exact shape of each object. YOLO11 instance segmentation models provide masks or contours that outline each detected object, which is particularly useful for tasks where knowing the precise shape of objects is important, such as medical imaging or autonomous driving.

### Why use YOLO11 for instance segmentation?

Ultralytics YOLO11 is a state-of-the-art model recognized for its high accuracy and real-time performance, making it ideal for instance segmentation tasks. YOLO11 Segment models come pretrained on the [COCO dataset](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), ensuring robust performance across a variety of objects. Additionally, YOLO supports training, validation, prediction, and export functionalities with seamless integration, making it highly versatile for both research and industry applications.

### How do I load and validate a pretrained YOLO segmentation model?

Loading and validating a pretrained YOLO segmentation model is straightforward. Here's how you can do it using both Python and CLI:

!!! example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a pretrained model

        model = YOLO("yolo11n-seg.pt")


        # Validate the model

        metrics = model.val()

        print("Mean Average Precision for boxes:", metrics.box.map)

        print("Mean Average Precision for masks:", metrics.seg.map)

        ```


    === "CLI"


        ```bash

        yolo segment val model=yolo11n-seg.pt

        ```


These steps will provide you with validation metrics like [Mean Average Precision](https://www.ultralytics.com/glossary/mean-average-precision-map) (mAP), crucial for assessing model performance.

### How can I export a YOLO segmentation model to ONNX format?

Exporting a YOLO segmentation model to ONNX format is simple and can be done using Python or CLI commands:

!!! example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a pretrained model

        model = YOLO("yolo11n-seg.pt")


        # Export the model to ONNX format

        model.export(format="onnx")

        ```


    === "CLI"


        ```bash

        yolo export model=yolo11n-seg.pt format=onnx

        ```


For more details on exporting to various formats, refer to the [Export](../modes/export.md) page.