File size: 46,782 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
---

comments: true
description: Harness the power of Ultralytics YOLO11 for real-time, high-speed inference on various data sources. Learn about predict mode, key features, and practical applications.
keywords: Ultralytics, YOLO11, model prediction, inference, predict mode, real-time inference, computer vision, machine learning, streaming, high performance
---


# Model Prediction with Ultralytics YOLO

<img width="1024" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-ecosystem-integrations.avif" alt="Ultralytics YOLO ecosystem and integrations">

## Introduction

In the world of [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv), the process of making sense out of visual data is called 'inference' or 'prediction'. Ultralytics YOLO11 offers a powerful feature known as **predict mode** that is tailored for high-performance, real-time inference on a wide range of data sources.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/QtsI0TnwDZs?si=ljesw75cMO2Eas14"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> How to Extract the Outputs from Ultralytics YOLO Model for Custom Projects.
</p>

## Real-world Applications

|                   Manufacturing                   |                        Sports                        |                   Safety                    |
| :-----------------------------------------------: | :--------------------------------------------------: | :-----------------------------------------: |
| ![Vehicle Spare Parts Detection][car spare parts] | ![Football Player Detection][football player detect] | ![People Fall Detection][human fall detect] |
|           Vehicle Spare Parts Detection           |              Football Player Detection               |            People Fall Detection            |

## Why Use Ultralytics YOLO for Inference?

Here's why you should consider YOLO11's predict mode for your various inference needs:

- **Versatility:** Capable of making inferences on images, videos, and even live streams.
- **Performance:** Engineered for real-time, high-speed processing without sacrificing [accuracy](https://www.ultralytics.com/glossary/accuracy).
- **Ease of Use:** Intuitive Python and CLI interfaces for rapid deployment and testing.
- **Highly Customizable:** Various settings and parameters to tune the model's inference behavior according to your specific requirements.

### Key Features of Predict Mode

YOLO11's predict mode is designed to be robust and versatile, featuring:

- **Multiple Data Source Compatibility:** Whether your data is in the form of individual images, a collection of images, video files, or real-time video streams, predict mode has you covered.
- **Streaming Mode:** Use the streaming feature to generate a memory-efficient generator of `Results` objects. Enable this by setting `stream=True` in the predictor's call method.
- **Batch Processing:** The ability to process multiple images or video frames in a single batch, further speeding up inference time.
- **Integration Friendly:** Easily integrate with existing data pipelines and other software components, thanks to its flexible API.

Ultralytics YOLO models return either a Python list of `Results` objects, or a memory-efficient Python generator of `Results` objects when `stream=True` is passed to the model during inference:

!!! example "Predict"

    === "Return a list with `stream=False`"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolo11n.pt")  # pretrained YOLO11n model


        # Run batched inference on a list of images

        results = model(["image1.jpg", "image2.jpg"])  # return a list of Results objects


        # Process results list

        for result in results:

            boxes = result.boxes  # Boxes object for bounding box outputs

            masks = result.masks  # Masks object for segmentation masks outputs

            keypoints = result.keypoints  # Keypoints object for pose outputs

            probs = result.probs  # Probs object for classification outputs

            obb = result.obb  # Oriented boxes object for OBB outputs

            result.show()  # display to screen

            result.save(filename="result.jpg")  # save to disk

        ```


    === "Return a generator with `stream=True`"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolo11n.pt")  # pretrained YOLO11n model


        # Run batched inference on a list of images

        results = model(["image1.jpg", "image2.jpg"], stream=True)  # return a generator of Results objects


        # Process results generator

        for result in results:

            boxes = result.boxes  # Boxes object for bounding box outputs

            masks = result.masks  # Masks object for segmentation masks outputs

            keypoints = result.keypoints  # Keypoints object for pose outputs

            probs = result.probs  # Probs object for classification outputs

            obb = result.obb  # Oriented boxes object for OBB outputs

            result.show()  # display to screen

            result.save(filename="result.jpg")  # save to disk

        ```


## Inference Sources

YOLO11 can process different types of input sources for inference, as shown in the table below. The sources include static images, video streams, and various data formats. The table also indicates whether each source can be used in streaming mode with the argument `stream=True` ✅. Streaming mode is beneficial for processing videos or live streams as it creates a generator of results instead of loading all frames into memory.

!!! tip

    Use `stream=True` for processing long videos or large datasets to efficiently manage memory. When `stream=False`, the results for all frames or data points are stored in memory, which can quickly add up and cause out-of-memory errors for large inputs. In contrast, `stream=True` utilizes a generator, which only keeps the results of the current frame or data point in memory, significantly reducing memory consumption and preventing out-of-memory issues.


| Source                                                | Example                                    | Type            | Notes                                                                                       |
| ----------------------------------------------------- | ------------------------------------------ | --------------- | ------------------------------------------------------------------------------------------- |
| image                                                 | `'image.jpg'`                              | `str` or `Path` | Single image file.                                                                          |
| URL                                                   | `'https://ultralytics.com/images/bus.jpg'` | `str`           | URL to an image.                                                                            |
| screenshot                                            | `'screen'`                                 | `str`           | Capture a screenshot.                                                                       |
| PIL                                                   | `Image.open('image.jpg')`                  | `PIL.Image`     | HWC format with RGB channels.                                                               |
| [OpenCV](https://www.ultralytics.com/glossary/opencv) | `cv2.imread('image.jpg')`                  | `np.ndarray`    | HWC format with BGR channels `uint8 (0-255)`.                                               |
| numpy                                                 | `np.zeros((640,1280,3))`                   | `np.ndarray`    | HWC format with BGR channels `uint8 (0-255)`.                                               |
| torch                                                 | `torch.zeros(16,3,320,640)`                | `torch.Tensor`  | BCHW format with RGB channels `float32 (0.0-1.0)`.                                          |
| CSV                                                   | `'sources.csv'`                            | `str` or `Path` | CSV file containing paths to images, videos, or directories.                                |
| video ✅                                              | `'video.mp4'`                              | `str` or `Path` | Video file in formats like MP4, AVI, etc.                                                   |
| directory ✅                                          | `'path/'`                                  | `str` or `Path` | Path to a directory containing images or videos.                                            |
| glob ✅                                               | `'path/*.jpg'`                             | `str`           | Glob pattern to match multiple files. Use the `*` character as a wildcard.                  |
| YouTube ✅                                            | `'https://youtu.be/LNwODJXcvt4'`           | `str`           | URL to a YouTube video.                                                                     |
| stream ✅                                             | `'rtsp://example.com/media.mp4'`           | `str`           | URL for streaming protocols such as RTSP, RTMP, TCP, or an IP address.                      |
| multi-stream ✅                                       | `'list.streams'`                           | `str` or `Path` | `*.streams` text file with one stream URL per row, i.e. 8 streams will run at batch-size 8. |
| webcam ✅                                             | `0`                                        | `int`           | Index of the connected camera device to run inference on.                                   |

Below are code examples for using each source type:

!!! example "Prediction sources"

    === "image"


        Run inference on an image file.

        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Define path to the image file

        source = "path/to/image.jpg"


        # Run inference on the source

        results = model(source)  # list of Results objects

        ```


    === "screenshot"


        Run inference on the current screen content as a screenshot.

        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Define current screenshot as source

        source = "screen"


        # Run inference on the source

        results = model(source)  # list of Results objects

        ```


    === "URL"


        Run inference on an image or video hosted remotely via URL.

        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Define remote image or video URL

        source = "https://ultralytics.com/images/bus.jpg"


        # Run inference on the source

        results = model(source)  # list of Results objects

        ```


    === "PIL"


        Run inference on an image opened with Python Imaging Library (PIL).

        ```python

        from PIL import Image


        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Open an image using PIL

        source = Image.open("path/to/image.jpg")


        # Run inference on the source

        results = model(source)  # list of Results objects

        ```


    === "OpenCV"


        Run inference on an image read with OpenCV.

        ```python

        import cv2


        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Read an image using OpenCV

        source = cv2.imread("path/to/image.jpg")


        # Run inference on the source

        results = model(source)  # list of Results objects

        ```


    === "numpy"


        Run inference on an image represented as a numpy array.

        ```python

        import numpy as np


        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Create a random numpy array of HWC shape (640, 640, 3) with values in range [0, 255] and type uint8

        source = np.random.randint(low=0, high=255, size=(640, 640, 3), dtype="uint8")


        # Run inference on the source

        results = model(source)  # list of Results objects

        ```


    === "torch"


        Run inference on an image represented as a [PyTorch](https://www.ultralytics.com/glossary/pytorch) tensor.

        ```python

        import torch


        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Create a random torch tensor of BCHW shape (1, 3, 640, 640) with values in range [0, 1] and type float32

        source = torch.rand(1, 3, 640, 640, dtype=torch.float32)


        # Run inference on the source

        results = model(source)  # list of Results objects

        ```


    === "CSV"


        Run inference on a collection of images, URLs, videos and directories listed in a CSV file.

        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Define a path to a CSV file with images, URLs, videos and directories

        source = "path/to/file.csv"


        # Run inference on the source

        results = model(source)  # list of Results objects

        ```


    === "video"


        Run inference on a video file. By using `stream=True`, you can create a generator of Results objects to reduce memory usage.

        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Define path to video file

        source = "path/to/video.mp4"


        # Run inference on the source

        results = model(source, stream=True)  # generator of Results objects

        ```


    === "directory"


        Run inference on all images and videos in a directory. To also capture images and videos in subdirectories use a glob pattern, i.e. `path/to/dir/**/*`.

        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Define path to directory containing images and videos for inference

        source = "path/to/dir"


        # Run inference on the source

        results = model(source, stream=True)  # generator of Results objects

        ```


    === "glob"


        Run inference on all images and videos that match a glob expression with `*` characters.

        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Define a glob search for all JPG files in a directory

        source = "path/to/dir/*.jpg"


        # OR define a recursive glob search for all JPG files including subdirectories

        source = "path/to/dir/**/*.jpg"


        # Run inference on the source

        results = model(source, stream=True)  # generator of Results objects

        ```


    === "YouTube"


        Run inference on a YouTube video. By using `stream=True`, you can create a generator of Results objects to reduce memory usage for long videos.

        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Define source as YouTube video URL

        source = "https://youtu.be/LNwODJXcvt4"


        # Run inference on the source

        results = model(source, stream=True)  # generator of Results objects

        ```


    === "Stream"


        Use the stream mode to run inference on live video streams using RTSP, RTMP, TCP, or IP address protocols. If a single stream is provided, the model runs inference with a [batch size](https://www.ultralytics.com/glossary/batch-size) of 1. For multiple streams, a `.streams` text file can be used to perform batched inference, where the batch size is determined by the number of streams provided (e.g., batch-size 8 for 8 streams).


        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Single stream with batch-size 1 inference

        source = "rtsp://example.com/media.mp4"  # RTSP, RTMP, TCP, or IP streaming address


        # Run inference on the source

        results = model(source, stream=True)  # generator of Results objects

        ```


        For single stream usage, the batch size is set to 1 by default, allowing efficient real-time processing of the video feed.


    === "Multi-Stream"


        To handle multiple video streams simultaneously, use a `.streams` text file containing the streaming sources. The model will run batched inference where the batch size equals the number of streams. This setup enables efficient processing of multiple feeds concurrently.


        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Multiple streams with batched inference (e.g., batch-size 8 for 8 streams)

        source = "path/to/list.streams"  # *.streams text file with one streaming address per line


        # Run inference on the source

        results = model(source, stream=True)  # generator of Results objects

        ```


        Example `.streams` text file:


        ```txt

        rtsp://example.com/media1.mp4

        rtsp://example.com/media2.mp4

        rtmp://example2.com/live

        tcp://192.168.1.100:554

        ...

        ```


        Each row in the file represents a streaming source, allowing you to monitor and perform inference on several video streams at once.


    === "Webcam"


        You can run inference on a connected camera device by passing the index of that particular camera to `source`.


        ```python

        from ultralytics import YOLO


        # Load a pretrained YOLO11n model

        model = YOLO("yolo11n.pt")


        # Run inference on the source

        results = model(source=0, stream=True)  # generator of Results objects

        ```


## Inference Arguments

`model.predict()` accepts multiple arguments that can be passed at inference time to override defaults:

!!! example

    ```python

    from ultralytics import YOLO


    # Load a pretrained YOLO11n model

    model = YOLO("yolo11n.pt")


    # Run inference on 'bus.jpg' with arguments

    model.predict("bus.jpg", save=True, imgsz=320, conf=0.5)

    ```


Inference arguments:

{% include "macros/predict-args.md" %}

Visualization arguments:

{% include "macros/visualization-args.md" %}

## Image and Video Formats

YOLO11 supports various image and video formats, as specified in [ultralytics/data/utils.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/utils.py). See the tables below for the valid suffixes and example predict commands.

### Images

The below table contains valid Ultralytics image formats.

!!! note

    HEIC images are supported for inference only, not for training.


| Image Suffixes | Example Predict Command          | Reference                                                                  |
| -------------- | -------------------------------- | -------------------------------------------------------------------------- |
| `.bmp`         | `yolo predict source=image.bmp`  | [Microsoft BMP File Format](https://en.wikipedia.org/wiki/BMP_file_format) |
| `.dng`         | `yolo predict source=image.dng`  | [Adobe DNG](https://en.wikipedia.org/wiki/Digital_Negative)                |
| `.jpeg`        | `yolo predict source=image.jpeg` | [JPEG](https://en.wikipedia.org/wiki/JPEG)                                 |
| `.jpg`         | `yolo predict source=image.jpg`  | [JPEG](https://en.wikipedia.org/wiki/JPEG)                                 |
| `.mpo`         | `yolo predict source=image.mpo`  | [Multi Picture Object](https://fileinfo.com/extension/mpo)                 |
| `.png`         | `yolo predict source=image.png`  | [Portable Network Graphics](https://en.wikipedia.org/wiki/PNG)             |
| `.tif`         | `yolo predict source=image.tif`  | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF)                |
| `.tiff`        | `yolo predict source=image.tiff` | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF)                |
| `.webp`        | `yolo predict source=image.webp` | [WebP](https://en.wikipedia.org/wiki/WebP)                                 |
| `.pfm`         | `yolo predict source=image.pfm`  | [Portable FloatMap](https://en.wikipedia.org/wiki/Netpbm#File_formats)     |
| `.HEIC`        | `yolo predict source=image.HEIC` | [High Efficiency Image Format](https://en.wikipedia.org/wiki/HEIF)         |

### Videos

The below table contains valid Ultralytics video formats.

| Video Suffixes | Example Predict Command          | Reference                                                                        |
| -------------- | -------------------------------- | -------------------------------------------------------------------------------- |
| `.asf`         | `yolo predict source=video.asf`  | [Advanced Systems Format](https://en.wikipedia.org/wiki/Advanced_Systems_Format) |
| `.avi`         | `yolo predict source=video.avi`  | [Audio Video Interleave](https://en.wikipedia.org/wiki/Audio_Video_Interleave)   |
| `.gif`         | `yolo predict source=video.gif`  | [Graphics Interchange Format](https://en.wikipedia.org/wiki/GIF)                 |
| `.m4v`         | `yolo predict source=video.m4v`  | [MPEG-4 Part 14](https://en.wikipedia.org/wiki/M4V)                              |
| `.mkv`         | `yolo predict source=video.mkv`  | [Matroska](https://en.wikipedia.org/wiki/Matroska)                               |
| `.mov`         | `yolo predict source=video.mov`  | [QuickTime File Format](https://en.wikipedia.org/wiki/QuickTime_File_Format)     |
| `.mp4`         | `yolo predict source=video.mp4`  | [MPEG-4 Part 14 - Wikipedia](https://en.wikipedia.org/wiki/MPEG-4_Part_14)       |
| `.mpeg`        | `yolo predict source=video.mpeg` | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1)                            |
| `.mpg`         | `yolo predict source=video.mpg`  | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1)                            |
| `.ts`          | `yolo predict source=video.ts`   | [MPEG Transport Stream](https://en.wikipedia.org/wiki/MPEG_transport_stream)     |
| `.wmv`         | `yolo predict source=video.wmv`  | [Windows Media Video](https://en.wikipedia.org/wiki/Windows_Media_Video)         |
| `.webm`        | `yolo predict source=video.webm` | [WebM Project](https://en.wikipedia.org/wiki/WebM)                               |

## Working with Results

All Ultralytics `predict()` calls will return a list of `Results` objects:

!!! example "Results"

    ```python

    from ultralytics import YOLO


    # Load a pretrained YOLO11n model

    model = YOLO("yolo11n.pt")


    # Run inference on an image

    results = model("bus.jpg")  # list of 1 Results object

    results = model(["bus.jpg", "zidane.jpg"])  # list of 2 Results objects

    ```


`Results` objects have the following attributes:

| Attribute    | Type                  | Description                                                                              |
| ------------ | --------------------- | ---------------------------------------------------------------------------------------- |
| `orig_img`   | `numpy.ndarray`       | The original image as a numpy array.                                                     |
| `orig_shape` | `tuple`               | The original image shape in (height, width) format.                                      |
| `boxes`      | `Boxes, optional`     | A Boxes object containing the detection bounding boxes.                                  |
| `masks`      | `Masks, optional`     | A Masks object containing the detection masks.                                           |
| `probs`      | `Probs, optional`     | A Probs object containing probabilities of each class for classification task.           |
| `keypoints`  | `Keypoints, optional` | A Keypoints object containing detected keypoints for each object.                        |
| `obb`        | `OBB, optional`       | An OBB object containing oriented bounding boxes.                                        |
| `speed`      | `dict`                | A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image. |
| `names`      | `dict`                | A dictionary of class names.                                                             |
| `path`       | `str`                 | The path to the image file.                                                              |

`Results` objects have the following methods:

| Method        | Return Type     | Description                                                                         |
| ------------- | --------------- | ----------------------------------------------------------------------------------- |
| `update()`    | `None`          | Update the boxes, masks, and probs attributes of the Results object.                |
| `cpu()`       | `Results`       | Return a copy of the Results object with all tensors on CPU memory.                 |
| `numpy()`     | `Results`       | Return a copy of the Results object with all tensors as numpy arrays.               |
| `cuda()`      | `Results`       | Return a copy of the Results object with all tensors on GPU memory.                 |
| `to()`        | `Results`       | Return a copy of the Results object with tensors on the specified device and dtype. |
| `new()`       | `Results`       | Return a new Results object with the same image, path, and names.                   |
| `plot()`      | `numpy.ndarray` | Plots the detection results. Returns a numpy array of the annotated image.          |
| `show()`      | `None`          | Show annotated results to screen.                                                   |
| `save()`      | `None`          | Save annotated results to file.                                                     |
| `verbose()`   | `str`           | Return log string for each task.                                                    |
| `save_txt()`  | `None`          | Save predictions into a txt file.                                                   |
| `save_crop()` | `None`          | Save cropped predictions to `save_dir/cls/file_name.jpg`.                           |
| `tojson()`    | `str`           | Convert the object to JSON format.                                                  |

For more details see the [`Results` class documentation](../reference/engine/results.md).

### Boxes

`Boxes` object can be used to index, manipulate, and convert bounding boxes to different formats.

!!! example "Boxes"

    ```python

    from ultralytics import YOLO


    # Load a pretrained YOLO11n model

    model = YOLO("yolo11n.pt")


    # Run inference on an image

    results = model("bus.jpg")  # results list


    # View results

    for r in results:

        print(r.boxes)  # print the Boxes object containing the detection bounding boxes

    ```


Here is a table for the `Boxes` class methods and properties, including their name, type, and description:

| Name      | Type                      | Description                                                        |
| --------- | ------------------------- | ------------------------------------------------------------------ |
| `cpu()`   | Method                    | Move the object to CPU memory.                                     |
| `numpy()` | Method                    | Convert the object to a numpy array.                               |
| `cuda()`  | Method                    | Move the object to CUDA memory.                                    |
| `to()`    | Method                    | Move the object to the specified device.                           |
| `xyxy`    | Property (`torch.Tensor`) | Return the boxes in xyxy format.                                   |
| `conf`    | Property (`torch.Tensor`) | Return the confidence values of the boxes.                         |
| `cls`     | Property (`torch.Tensor`) | Return the class values of the boxes.                              |
| `id`      | Property (`torch.Tensor`) | Return the track IDs of the boxes (if available).                  |
| `xywh`    | Property (`torch.Tensor`) | Return the boxes in xywh format.                                   |
| `xyxyn`   | Property (`torch.Tensor`) | Return the boxes in xyxy format normalized by original image size. |
| `xywhn`   | Property (`torch.Tensor`) | Return the boxes in xywh format normalized by original image size. |

For more details see the [`Boxes` class documentation](../reference/engine/results.md#ultralytics.engine.results.Boxes).

### Masks

`Masks` object can be used index, manipulate and convert masks to segments.

!!! example "Masks"

    ```python

    from ultralytics import YOLO


    # Load a pretrained YOLO11n-seg Segment model

    model = YOLO("yolo11n-seg.pt")


    # Run inference on an image

    results = model("bus.jpg")  # results list


    # View results

    for r in results:

        print(r.masks)  # print the Masks object containing the detected instance masks

    ```


Here is a table for the `Masks` class methods and properties, including their name, type, and description:

| Name      | Type                      | Description                                                     |
| --------- | ------------------------- | --------------------------------------------------------------- |
| `cpu()`   | Method                    | Returns the masks tensor on CPU memory.                         |
| `numpy()` | Method                    | Returns the masks tensor as a numpy array.                      |
| `cuda()`  | Method                    | Returns the masks tensor on GPU memory.                         |
| `to()`    | Method                    | Returns the masks tensor with the specified device and dtype.   |
| `xyn`     | Property (`torch.Tensor`) | A list of normalized segments represented as tensors.           |
| `xy`      | Property (`torch.Tensor`) | A list of segments in pixel coordinates represented as tensors. |

For more details see the [`Masks` class documentation](../reference/engine/results.md#ultralytics.engine.results.Masks).

### Keypoints

`Keypoints` object can be used index, manipulate and normalize coordinates.

!!! example "Keypoints"

    ```python

    from ultralytics import YOLO


    # Load a pretrained YOLO11n-pose Pose model

    model = YOLO("yolo11n-pose.pt")


    # Run inference on an image

    results = model("bus.jpg")  # results list


    # View results

    for r in results:

        print(r.keypoints)  # print the Keypoints object containing the detected keypoints

    ```


Here is a table for the `Keypoints` class methods and properties, including their name, type, and description:

| Name      | Type                      | Description                                                       |
| --------- | ------------------------- | ----------------------------------------------------------------- |
| `cpu()`   | Method                    | Returns the keypoints tensor on CPU memory.                       |
| `numpy()` | Method                    | Returns the keypoints tensor as a numpy array.                    |
| `cuda()`  | Method                    | Returns the keypoints tensor on GPU memory.                       |
| `to()`    | Method                    | Returns the keypoints tensor with the specified device and dtype. |
| `xyn`     | Property (`torch.Tensor`) | A list of normalized keypoints represented as tensors.            |
| `xy`      | Property (`torch.Tensor`) | A list of keypoints in pixel coordinates represented as tensors.  |
| `conf`    | Property (`torch.Tensor`) | Returns confidence values of keypoints if available, else None.   |

For more details see the [`Keypoints` class documentation](../reference/engine/results.md#ultralytics.engine.results.Keypoints).

### Probs

`Probs` object can be used index, get `top1` and `top5` indices and scores of classification.

!!! example "Probs"

    ```python

    from ultralytics import YOLO


    # Load a pretrained YOLO11n-cls Classify model

    model = YOLO("yolo11n-cls.pt")


    # Run inference on an image

    results = model("bus.jpg")  # results list


    # View results

    for r in results:

        print(r.probs)  # print the Probs object containing the detected class probabilities

    ```


Here's a table summarizing the methods and properties for the `Probs` class:

| Name       | Type                      | Description                                                             |
| ---------- | ------------------------- | ----------------------------------------------------------------------- |
| `cpu()`    | Method                    | Returns a copy of the probs tensor on CPU memory.                       |
| `numpy()`  | Method                    | Returns a copy of the probs tensor as a numpy array.                    |
| `cuda()`   | Method                    | Returns a copy of the probs tensor on GPU memory.                       |
| `to()`     | Method                    | Returns a copy of the probs tensor with the specified device and dtype. |
| `top1`     | Property (`int`)          | Index of the top 1 class.                                               |
| `top5`     | Property (`list[int]`)    | Indices of the top 5 classes.                                           |
| `top1conf` | Property (`torch.Tensor`) | Confidence of the top 1 class.                                          |
| `top5conf` | Property (`torch.Tensor`) | Confidences of the top 5 classes.                                       |

For more details see the [`Probs` class documentation](../reference/engine/results.md#ultralytics.engine.results.Probs).

### OBB

`OBB` object can be used to index, manipulate, and convert oriented bounding boxes to different formats.

!!! example "OBB"

    ```python

    from ultralytics import YOLO


    # Load a pretrained YOLO11n model

    model = YOLO("yolo11n-obb.pt")


    # Run inference on an image

    results = model("bus.jpg")  # results list


    # View results

    for r in results:

        print(r.obb)  # print the OBB object containing the oriented detection bounding boxes

    ```


Here is a table for the `OBB` class methods and properties, including their name, type, and description:

| Name        | Type                      | Description                                                           |
| ----------- | ------------------------- | --------------------------------------------------------------------- |
| `cpu()`     | Method                    | Move the object to CPU memory.                                        |
| `numpy()`   | Method                    | Convert the object to a numpy array.                                  |
| `cuda()`    | Method                    | Move the object to CUDA memory.                                       |
| `to()`      | Method                    | Move the object to the specified device.                              |
| `conf`      | Property (`torch.Tensor`) | Return the confidence values of the boxes.                            |
| `cls`       | Property (`torch.Tensor`) | Return the class values of the boxes.                                 |
| `id`        | Property (`torch.Tensor`) | Return the track IDs of the boxes (if available).                     |
| `xyxy`      | Property (`torch.Tensor`) | Return the horizontal boxes in xyxy format.                           |
| `xywhr`     | Property (`torch.Tensor`) | Return the rotated boxes in xywhr format.                             |
| `xyxyxyxy`  | Property (`torch.Tensor`) | Return the rotated boxes in xyxyxyxy format.                          |
| `xyxyxyxyn` | Property (`torch.Tensor`) | Return the rotated boxes in xyxyxyxy format normalized by image size. |

For more details see the [`OBB` class documentation](../reference/engine/results.md#ultralytics.engine.results.OBB).

## Plotting Results

The `plot()` method in `Results` objects facilitates visualization of predictions by overlaying detected objects (such as bounding boxes, masks, keypoints, and probabilities) onto the original image. This method returns the annotated image as a NumPy array, allowing for easy display or saving.

!!! example "Plotting"

    ```python

    from PIL import Image


    from ultralytics import YOLO


    # Load a pretrained YOLO11n model

    model = YOLO("yolo11n.pt")


    # Run inference on 'bus.jpg'

    results = model(["bus.jpg", "zidane.jpg"])  # results list


    # Visualize the results

    for i, r in enumerate(results):

        # Plot results image

        im_bgr = r.plot()  # BGR-order numpy array

        im_rgb = Image.fromarray(im_bgr[..., ::-1])  # RGB-order PIL image


        # Show results to screen (in supported environments)

        r.show()


        # Save results to disk

        r.save(filename=f"results{i}.jpg")

    ```


### `plot()` Method Parameters

The `plot()` method supports various arguments to customize the output:

| Argument     | Type            | Description                                                                | Default       |
| ------------ | --------------- | -------------------------------------------------------------------------- | ------------- |
| `conf`       | `bool`          | Include detection confidence scores.                                       | `True`        |
| `line_width` | `float`         | Line width of bounding boxes. Scales with image size if `None`.            | `None`        |
| `font_size`  | `float`         | Text font size. Scales with image size if `None`.                          | `None`        |
| `font`       | `str`           | Font name for text annotations.                                            | `'Arial.ttf'` |
| `pil`        | `bool`          | Return image as a PIL Image object.                                        | `False`       |
| `img`        | `numpy.ndarray` | Alternative image for plotting. Uses the original image if `None`.         | `None`        |
| `im_gpu`     | `torch.Tensor`  | GPU-accelerated image for faster mask plotting. Shape: (1, 3, 640, 640).   | `None`        |
| `kpt_radius` | `int`           | Radius for drawn keypoints.                                                | `5`           |
| `kpt_line`   | `bool`          | Connect keypoints with lines.                                              | `True`        |
| `labels`     | `bool`          | Include class labels in annotations.                                       | `True`        |
| `boxes`      | `bool`          | Overlay bounding boxes on the image.                                       | `True`        |
| `masks`      | `bool`          | Overlay masks on the image.                                                | `True`        |
| `probs`      | `bool`          | Include classification probabilities.                                      | `True`        |
| `show`       | `bool`          | Display the annotated image directly using the default image viewer.       | `False`       |
| `save`       | `bool`          | Save the annotated image to a file specified by `filename`.                | `False`       |
| `filename`   | `str`           | Path and name of the file to save the annotated image if `save` is `True`. | `None`        |
| `color_mode` | `str`           | Specify the color mode, e.g., 'instance' or 'class'.                       | `'class'`     |

## Thread-Safe Inference

Ensuring thread safety during inference is crucial when you are running multiple YOLO models in parallel across different threads. Thread-safe inference guarantees that each thread's predictions are isolated and do not interfere with one another, avoiding race conditions and ensuring consistent and reliable outputs.

When using YOLO models in a multi-threaded application, it's important to instantiate separate model objects for each thread or employ thread-local storage to prevent conflicts:

!!! example "Thread-Safe Inference"

    Instantiate a single model inside each thread for thread-safe inference:

    ```python

    from threading import Thread


    from ultralytics import YOLO



    def thread_safe_predict(model, image_path):

        """Performs thread-safe prediction on an image using a locally instantiated YOLO model."""

        model = YOLO(model)

        results = model.predict(image_path)

        # Process results



    # Starting threads that each have their own model instance

    Thread(target=thread_safe_predict, args=("yolo11n.pt", "image1.jpg")).start()

    Thread(target=thread_safe_predict, args=("yolo11n.pt", "image2.jpg")).start()

    ```


For an in-depth look at thread-safe inference with YOLO models and step-by-step instructions, please refer to our [YOLO Thread-Safe Inference Guide](../guides/yolo-thread-safe-inference.md). This guide will provide you with all the necessary information to avoid common pitfalls and ensure that your multi-threaded inference runs smoothly.

## Streaming Source `for`-loop

Here's a Python script using OpenCV (`cv2`) and YOLO to run inference on video frames. This script assumes you have already installed the necessary packages (`opencv-python` and `ultralytics`).

!!! example "Streaming for-loop"

    ```python

    import cv2


    from ultralytics import YOLO


    # Load the YOLO model

    model = YOLO("yolo11n.pt")


    # Open the video file

    video_path = "path/to/your/video/file.mp4"

    cap = cv2.VideoCapture(video_path)


    # Loop through the video frames

    while cap.isOpened():

        # Read a frame from the video

        success, frame = cap.read()


        if success:

            # Run YOLO inference on the frame

            results = model(frame)


            # Visualize the results on the frame

            annotated_frame = results[0].plot()


            # Display the annotated frame

            cv2.imshow("YOLO Inference", annotated_frame)


            # Break the loop if 'q' is pressed

            if cv2.waitKey(1) & 0xFF == ord("q"):

                break

        else:

            # Break the loop if the end of the video is reached

            break


    # Release the video capture object and close the display window

    cap.release()

    cv2.destroyAllWindows()

    ```


This script will run predictions on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.

[car spare parts]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/a0f802a8-0776-44cf-8f17-93974a4a28a1
[football player detect]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/7d320e1f-fc57-4d7f-a691-78ee579c3442
[human fall detect]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/86437c4a-3227-4eee-90ef-9efb697bdb43

## FAQ

### What is Ultralytics YOLO and its predict mode for real-time inference?

Ultralytics YOLO is a state-of-the-art model for real-time [object detection](https://www.ultralytics.com/glossary/object-detection), segmentation, and classification. Its **predict mode** allows users to perform high-speed inference on various data sources such as images, videos, and live streams. Designed for performance and versatility, it also offers batch processing and streaming modes. For more details on its features, check out the [Ultralytics YOLO predict mode](#key-features-of-predict-mode).

### How can I run inference using Ultralytics YOLO on different data sources?

Ultralytics YOLO can process a wide range of data sources, including individual images, videos, directories, URLs, and streams. You can specify the data source in the `model.predict()` call. For example, use `'image.jpg'` for a local image or `'https://ultralytics.com/images/bus.jpg'` for a URL. Check out the detailed examples for various [inference sources](#inference-sources) in the documentation.

### How do I optimize YOLO inference speed and memory usage?

To optimize inference speed and manage memory efficiently, you can use the streaming mode by setting `stream=True` in the predictor's call method. The streaming mode generates a memory-efficient generator of `Results` objects instead of loading all frames into memory. For processing long videos or large datasets, streaming mode is particularly useful. Learn more about [streaming mode](#key-features-of-predict-mode).

### What inference arguments does Ultralytics YOLO support?

The `model.predict()` method in YOLO supports various arguments such as `conf`, `iou`, `imgsz`, `device`, and more. These arguments allow you to customize the inference process, setting parameters like confidence thresholds, image size, and the device used for computation. Detailed descriptions of these arguments can be found in the [inference arguments](#inference-arguments) section.

### How can I visualize and save the results of YOLO predictions?

After running inference with YOLO, the `Results` objects contain methods for displaying and saving annotated images. You can use methods like `result.show()` and `result.save(filename="result.jpg")` to visualize and save the results. For a comprehensive list of these methods, refer to the [working with results](#working-with-results) section.