File size: 3,464 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Builds ultralytics/ultralytics:jetson-jetpack4 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
# Supports JetPack4.x for YOLO11 on Jetson Nano, TX2, Xavier NX, AGX Xavier

# Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-cuda
FROM nvcr.io/nvidia/l4t-cuda:10.2.460-runtime

# Set environment variables
ENV PYTHONUNBUFFERED=1 \
    PYTHONDONTWRITEBYTECODE=1

# Downloads to user config dir
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
    https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
    /root/.config/Ultralytics/

# Add NVIDIA repositories for TensorRT dependencies
RUN wget -q -O - https://repo.download.nvidia.com/jetson/jetson-ota-public.asc | apt-key add - && \
  echo "deb https://repo.download.nvidia.com/jetson/common r32.7 main" > /etc/apt/sources.list.d/nvidia-l4t-apt-source.list && \
  echo "deb https://repo.download.nvidia.com/jetson/t194 r32.7 main" >> /etc/apt/sources.list.d/nvidia-l4t-apt-source.list

# Install dependencies
RUN apt-get update && \
    apt-get install -y --no-install-recommends \
    git python3.8 python3.8-dev python3-pip python3-libnvinfer libopenmpi-dev libopenblas-base libomp-dev gcc \
    && rm -rf /var/lib/apt/lists/*

# Create symbolic links for python3.8 and pip3
RUN ln -sf /usr/bin/python3.8 /usr/bin/python3
RUN ln -s /usr/bin/pip3 /usr/bin/pip

# Create working directory
WORKDIR /ultralytics

# Copy contents and configure git
COPY . .
RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .

# Download onnxruntime-gpu 1.8.0 and tensorrt 8.2.0.6
# Other versions can be seen in https://elinux.org/Jetson_Zoo and https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048
ADD https://nvidia.box.com/shared/static/gjqofg7rkg97z3gc8jeyup6t8n9j8xjw.whl onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl
ADD https://forums.developer.nvidia.com/uploads/short-url/hASzFOm9YsJx6VVFrDW1g44CMmv.whl tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl

# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install \
    onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl \
    tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl \
    https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl \
    https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl
RUN pip install -e ".[export]"

# Remove extra build files
RUN rm -rf *.whl /root/.config/Ultralytics/persistent_cache.json

# Usage Examples -------------------------------------------------------------------------------------------------------

# Build and Push
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack4 -t $t . && sudo docker push $t

# Run
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker run -it --ipc=host $t

# Pull and Run
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host $t

# Pull and Run with NVIDIA runtime
# t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t