Create configuration_bert.py

#1
Files changed (1) hide show
  1. configuration_bert.py +159 -0
configuration_bert.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ # Copyright (c) 2023 Jina AI GmbH. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ BERT model configuration"""
18
+ from collections import OrderedDict
19
+ from typing import Mapping
20
+
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.onnx import OnnxConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class JinaBertConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`JinaBertModel`]. It is used to
32
+ instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
33
+ configuration with the defaults will yield a similar configuration to that of the BERT
34
+ [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 30522):
39
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
41
+ hidden_size (`int`, *optional*, defaults to 768):
42
+ Dimensionality of the encoder layers and the pooler layer.
43
+ num_hidden_layers (`int`, *optional*, defaults to 12):
44
+ Number of hidden layers in the Transformer encoder.
45
+ num_attention_heads (`int`, *optional*, defaults to 12):
46
+ Number of attention heads for each attention layer in the Transformer encoder.
47
+ intermediate_size (`int`, *optional*, defaults to 3072):
48
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
49
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
50
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
51
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
52
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
53
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
54
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
55
+ The dropout ratio for the attention probabilities.
56
+ max_position_embeddings (`int`, *optional*, defaults to 512):
57
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
58
+ just in case (e.g., 512 or 1024 or 2048).
59
+ type_vocab_size (`int`, *optional*, defaults to 2):
60
+ The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
64
+ The epsilon used by the layer normalization layers.
65
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
66
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
67
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
68
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
69
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
70
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
71
+ is_decoder (`bool`, *optional*, defaults to `False`):
72
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
73
+ use_cache (`bool`, *optional*, defaults to `True`):
74
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
75
+ relevant if `config.is_decoder=True`.
76
+ classifier_dropout (`float`, *optional*):
77
+ The dropout ratio for the classification head.
78
+ feed_forward_type (`str`, *optional*, defaults to `"original"`):
79
+ The type of feed forward layer to use in the bert layers.
80
+ Can be one of GLU variants, e.g. `"reglu"`, `"geglu"`
81
+ emb_pooler (`str`, *optional*, defaults to `None`):
82
+ The function to use for pooling the last layer embeddings to get the sentence embeddings.
83
+ Should be one of `None`, `"mean"`.
84
+ attn_implementation (`str`, *optional*, defaults to `"torch"`):
85
+ The implementation of the self-attention layer. Can be one of:
86
+ - `None` for the original implementation,
87
+ - `torch` for the PyTorch SDPA implementation,
88
+ Examples:
89
+ ```python
90
+ >>> from transformers import JinaBertConfig, JinaBertModel
91
+ >>> # Initializing a JinaBert configuration
92
+ >>> configuration = JinaBertConfig()
93
+ >>> # Initializing a model (with random weights) from the configuration
94
+ >>> model = JinaBertModel(configuration)
95
+ >>> # Accessing the model configuration
96
+ >>> configuration = model.config
97
+ >>> # Encode text inputs
98
+ >>> embeddings = model.encode(text_inputs)
99
+ ```"""
100
+ model_type = "bert"
101
+
102
+ def __init__(
103
+ self,
104
+ vocab_size=30522,
105
+ hidden_size=768,
106
+ num_hidden_layers=12,
107
+ num_attention_heads=12,
108
+ intermediate_size=3072,
109
+ hidden_act="gelu",
110
+ hidden_dropout_prob=0.1,
111
+ attention_probs_dropout_prob=0.1,
112
+ max_position_embeddings=512,
113
+ type_vocab_size=2,
114
+ initializer_range=0.02,
115
+ layer_norm_eps=1e-12,
116
+ pad_token_id=0,
117
+ position_embedding_type="absolute",
118
+ use_cache=True,
119
+ classifier_dropout=None,
120
+ feed_forward_type="original",
121
+ emb_pooler=None,
122
+ attn_implementation='torch',
123
+ **kwargs,
124
+ ):
125
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
126
+
127
+ self.vocab_size = vocab_size
128
+ self.hidden_size = hidden_size
129
+ self.num_hidden_layers = num_hidden_layers
130
+ self.num_attention_heads = num_attention_heads
131
+ self.hidden_act = hidden_act
132
+ self.intermediate_size = intermediate_size
133
+ self.hidden_dropout_prob = hidden_dropout_prob
134
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
135
+ self.max_position_embeddings = max_position_embeddings
136
+ self.type_vocab_size = type_vocab_size
137
+ self.initializer_range = initializer_range
138
+ self.layer_norm_eps = layer_norm_eps
139
+ self.position_embedding_type = position_embedding_type
140
+ self.use_cache = use_cache
141
+ self.classifier_dropout = classifier_dropout
142
+ self.feed_forward_type = feed_forward_type
143
+ self.emb_pooler = emb_pooler
144
+ self.attn_implementation = attn_implementation
145
+
146
+ class JinaBertOnnxConfig(OnnxConfig):
147
+ @property
148
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
149
+ if self.task == "multiple-choice":
150
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
151
+ else:
152
+ dynamic_axis = {0: "batch", 1: "sequence"}
153
+ return OrderedDict(
154
+ [
155
+ ("input_ids", dynamic_axis),
156
+ ("attention_mask", dynamic_axis),
157
+ ("token_type_ids", dynamic_axis),
158
+ ]
159
+ )