microsoft-wavlm-fleurs-ur

This model is a fine-tuned version of microsoft/wavlm-large on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7294
  • Wer: 0.4026

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.911 0.35 100 3.7784 1.0
3.0833 0.71 200 3.0964 1.0
3.028 1.06 300 3.0377 1.0
2.5114 1.41 400 2.4941 0.9922
1.0583 1.77 500 1.0753 0.7579
0.715 2.12 600 0.8524 0.6410
0.6779 2.47 700 0.7711 0.6063
0.6123 2.83 800 0.7170 0.5706
0.8183 3.18 900 0.6897 0.5368
0.5195 3.53 1000 0.6586 0.5303
0.4774 3.89 1100 0.6306 0.5014
0.4242 4.24 1200 0.6138 0.4817
0.4549 4.59 1300 0.6027 0.4678
0.2576 4.95 1400 0.5878 0.4600
0.1578 5.3 1500 0.6144 0.4585
0.3556 5.65 1600 0.5884 0.4582
0.2427 6.01 1700 0.6071 0.4572
0.267 6.36 1800 0.6303 0.4514
0.2468 6.71 1900 0.6358 0.4495
0.159 7.07 2000 0.6242 0.4312
0.1527 7.42 2100 0.6372 0.4400
0.1401 7.77 2200 0.6252 0.4292
0.1211 8.13 2300 0.6358 0.4251
0.1022 8.48 2400 0.6529 0.4356
0.0818 8.83 2500 0.6773 0.4200
0.0918 9.19 2600 0.6879 0.4267
0.119 9.54 2700 0.6948 0.4254
0.1615 9.89 2800 0.6920 0.4259
0.0953 10.25 2900 0.7019 0.4218
0.1008 10.6 3000 0.6933 0.4133
0.0729 10.95 3100 0.6950 0.4164
0.0636 11.31 3200 0.7151 0.4121
0.0395 11.66 3300 0.7053 0.4098
0.0391 12.01 3400 0.7081 0.3984
0.0507 12.37 3500 0.7012 0.4111
0.0598 12.72 3600 0.7169 0.4035
0.0515 13.07 3700 0.7358 0.4102
0.0429 13.43 3800 0.7236 0.4013
0.0398 13.78 3900 0.7404 0.4026
0.0946 14.13 4000 0.7285 0.4029
0.0428 14.49 4100 0.7271 0.3991
0.0329 14.84 4200 0.7294 0.4026

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results