metadata
base_model: akhooli/Arabic-SBERT-100K
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
كان جزء من المطعم يقع في الهواء الطلق كانت أسوأ تجربة مررت بها عندما كنت
أجلس خارج الفندق لتناول مشروب في المساء أثناء مشاهدة مبارة التشيك مع تركيا
في بطولة يورو . تلقى السائح الألماني الذي كان يجلس على الطاولة بجانبنا
فاتورة تضم تكاليف طعام ومشروبات لم يطلبها ولكنها وضعت على طاولته وثمن طعام
لم يصل أيضا كان النادل غير مبال وهز كتفيه ثم أحضر المدير الذي لم يكن
متعاونا بنفس القدر. ثم كانت دهشتنا عندما ذهب المدير ليطرق نافذة سيارة
الشرطة التي كانت متوقفة خارج منطقة الجلوس لمراقبة الحشود التي كانت تشاهد
المباراة على شاشة كبيرة في ميدان وينسيسلاس. هناك الآن رجال شرطة والمدير
والنادل يواجهون هذا الرجل الذي كان مؤدبا وهادئا للغاية لكنه كان مصرا على
الدفاع عن موقفه. ظل يدعي أنه لم يجلس على الطاولة لفترة طويلة بما يكفي
لتناول وشرب ما كانوا يطالبونه بالدفع مقابله. كان المشهد مروعا ويحدث على
بعد متر من طاولتنا، لذا قررنا المغادرة. المكان في حاجة إلى بعض خدمة
العملاء كانت المشروبات باهظة الثمن للغاية. تجنب هذا المكان. جرب تناول
الطعام أو مشروب في نيبوزيزيك في منتصف الطريق المائل إلى بيترن هيل الأسعار
جميلة ومعقولة.
- text: >-
الرواية دي اي كلام يتقال عليها يقلل من قيمتها لأنها احسن من اي
ريفيو...ببساطة خمس نجوم لا تكفي
- text: >-
مقبول. الموقع قريب من الحرم النبوي. الاستقبال كان سيء جدا، الأثاث قديم جدا
، المطعم صغير ومزدحم والقيمة مقابل المال دون المستوىلاأنصح أبدا بالإقامة
فيه، حيث أن وجدت هناك فنادق أفضل منه وأرخص
- text: >-
أكثر من كتاب .. أكثر من حياة. الفهم التجديدي ، والاختصار الشمولي العميق ،
واللغة السلسة الواضحة ، كل هذه المزايا تضع الكتاب موضع استحقاق القراءة
أكثر من مرة ..
- text: >-
مكان راحه البال . المكان نظيف جدا ومريح جدا. عدم وجود مكان للباركن السياره
فالفندق
inference: true
model-index:
- name: SetFit with akhooli/Arabic-SBERT-100K
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.5005050505050505
name: Accuracy
SetFit with akhooli/Arabic-SBERT-100K
This is a SetFit model that can be used for Text Classification. This SetFit model uses akhooli/Arabic-SBERT-100K as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: akhooli/Arabic-SBERT-100K
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Positive |
|
Mixed |
|
Negative |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5005 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit")
# Run inference
preds = model("مكان راحه البال . المكان نظيف جدا ومريح جدا. عدم وجود مكان للباركن السياره فالفندق")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 5 | 38.625 | 127 |
Label | Training Sample Count |
---|---|
Mixed | 8 |
Negative | 8 |
Positive | 8 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.1667 | 1 | 0.2506 | - |
1.0 | 6 | - | 0.2707 |
2.0 | 12 | - | 0.2555 |
3.0 | 18 | - | 0.2677 |
4.0 | 24 | - | 0.2754 |
Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}