File size: 16,815 Bytes
dd9a529 c86127e dd9a529 9d3af0b e215b38 dd9a529 c86127e dd9a529 c86127e dd9a529 c86127e dd9a529 c86127e dd9a529 c86127e dd9a529 9d3af0b dd9a529 9d3af0b dd9a529 c86127e dd9a529 e215b38 dd9a529 9d3af0b dd9a529 9d3af0b dd9a529 c86127e dd9a529 e215b38 dd9a529 e215b38 dd9a529 e215b38 dd9a529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
base_model: akhooli/sbert_ar_nli_500k
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: كان جزء من المطعم يقع في الهواء الطلق كانت أسوأ تجربة مررت بها عندما كنت أجلس
خارج الفندق لتناول مشروب في المساء أثناء مشاهدة مبارة التشيك مع تركيا في بطولة
يورو . تلقى السائح الألماني الذي كان يجلس على الطاولة بجانبنا فاتورة تضم تكاليف
طعام ومشروبات لم يطلبها ولكنها وضعت على طاولته وثمن طعام لم يصل أيضا كان النادل
غير مبال وهز كتفيه ثم أحضر المدير الذي لم يكن متعاونا بنفس القدر. ثم كانت دهشتنا
عندما ذهب المدير ليطرق نافذة سيارة الشرطة التي كانت متوقفة خارج منطقة الجلوس لمراقبة
الحشود التي كانت تشاهد المباراة على شاشة كبيرة في ميدان وينسيسلاس. هناك الآن رجال
شرطة والمدير والنادل يواجهون هذا الرجل الذي كان مؤدبا وهادئا للغاية لكنه كان مصرا
على الدفاع عن موقفه. ظل يدعي أنه لم يجلس على الطاولة لفترة طويلة بما يكفي لتناول
وشرب ما كانوا يطالبونه بالدفع مقابله. كان المشهد مروعا ويحدث على بعد متر من طاولتنا،
لذا قررنا المغادرة. المكان في حاجة إلى بعض خدمة العملاء كانت المشروبات باهظة الثمن
للغاية. تجنب هذا المكان. جرب تناول الطعام أو مشروب في نيبوزيزيك في منتصف الطريق
المائل إلى بيترن هيل الأسعار جميلة ومعقولة.
- text: الرواية دي اي كلام يتقال عليها يقلل من قيمتها لأنها احسن من اي ريفيو...ببساطة
خمس نجوم لا تكفي
- text: مقبول. الموقع قريب من الحرم النبوي. الاستقبال كان سيء جدا، الأثاث قديم جدا
، المطعم صغير ومزدحم والقيمة مقابل المال دون المستوىلاأنصح أبدا بالإقامة فيه،
حيث أن وجدت هناك فنادق أفضل منه وأرخص
- text: أكثر من كتاب .. أكثر من حياة. الفهم التجديدي ، والاختصار الشمولي العميق ،
واللغة السلسة الواضحة ، كل هذه المزايا تضع الكتاب موضع استحقاق القراءة أكثر من
مرة ..
- text: مكان راحه البال . المكان نظيف جدا ومريح جدا. عدم وجود مكان للباركن السياره
فالفندق
inference: true
model-index:
- name: SetFit with akhooli/sbert_ar_nli_500k
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.46636363636363637
name: Accuracy
---
# SetFit with akhooli/sbert_ar_nli_500k
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k](https://huggingface.co/akhooli/sbert_ar_nli_500k) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k](https://huggingface.co/akhooli/sbert_ar_nli_500k)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Positive | <ul><li>'. نجمات. قصة جيدة. لا أدري ما الذي أغضبني أكثر تعامل البشر مع الحيوانات أم تعامل الخنازير مع الحيوانات .. لأنه يبدو لي أن الخنازير كانت بارعة في دور الإنسان أكثر من الإنسان نفسه . لقراءتي عن بعض الثورات مؤخرا رحت أقارن بين الأحداث هنا و هناك يا ترى هل سيكون لجميعها نهاية كهذه ؟ هل سيكون لكل شخص بدوره المذكور نهاية كالتي طالته هنا كذلك ؟'</li><li>'وكأن ما يكتبه قد كتبته بيدي أصبح اأعرف حتى ما ينوي قوله تعجز الكلامات عن وصفه'</li><li>'تقول في روايتها : لا أفقر من امرأة لا ذكريات لها. وأنا أقول لا أفقر من قارئ لا يقرأ لها. ... أعتقد أن أحلام أرادت أن تنتصر المرأه هذه المره حتى على حساب الحب. بنسبه إلي كانت لغة أحلام قوية كعادتها تجيد أختيار الخيوط لكن هذه المره فشل في حياكتها. أظنها أرادتها كنزه أفصبحت جورب. أو أن في كتابها الأخير نسيان أردات أن يطبق هذا على واقع أوراقها وينسى الحب أبطاله'</li></ul> |
| Mixed | <ul><li>'مناسب للميزانيات المحدودة . قرب الفندق من ديرة ستي سنتر نظيف و مرتب مقارنة بالفنادق اللي بنفس السعر. الاضاءة ضعيفة سواء في الغرف او في الاستقبالالفطور بسيط وطلبات الغرف تقدم بصينية وصحون بلاستيكية'</li><li>'نعيش أياما سوداء يا صديقى إذا كانت لديك فرصة للهجرة أرجوك هاجر ، و إذا كان ابنك أو شقيقك يحلم بالهجرة أرجوك لا تقف فى طريقه ، و إذا كنت بره أساسا أرجوك خليك عندك ؛ فالبلد لن ينصلح حاله قريبا حتى لو تغير النظام ، فالمشكلة الأكبر فى الناس ، الهجرة يا صديقى الهجرة .. الحياة ليست بروفة وستعيش مرة واحدة فحاول أن تعيشها صح .'</li><li>'متعب. أقمت كجزء من مجموعة. لم أنفق مثل تلك النفقات الكثيرة منذ أن تم تطويره والتي تبدو نفقات باهظة في لمح البصر. بدا مكلفا للغاية مقارنة بالوضع الذي كان عليه. وبكلامنا نحن الإنجليز، الفندق نجوم إلى حد كبير وليس مجرد نجوم، ولكنه قديم جدا بالفعل... كانت الغرفة ذات ورق حائط ملطخ والسجاجيد رقيقة والسرير غير مستو ولكن الأغطية والألحفة نظيفة ورائعة . كانت هناك بعض الأمور الغريبة، على سبيل المثال: لم لم تكن هناك مصاعد جاهزة في الطابق الأرضي مطلقا؟ كانت غرفة البخار لا تعمل طوال الأسبوع. لا يتم تقديم الكحول في الردهة بعد الساعة الثانية عشر لكن كان يقدم في النادي الصاخب فى الطابق الثالث. المكان مناسب للعمل ولمشاهدة المناظر بشكل معقول. إذا كنت في رحلة رومانسية إلى هانوي... فلا مجال لذلك'</li></ul> |
| Negative | <ul><li>'مخيب للأمل. . أصوات أعمال بناء و إزعاج شديد من مطارق و حفر من الصباح الباكر لم نستطع بسببها النوم و الراحة مع عدم تجاوب مسؤول الفندق مع الشكوى و التعامل غير الجيد مع الشكوى'</li><li>'مش سطحية بس الخلاصة ثورات انقلابات قتل قتل قتل كتير. اللى يصحى بدري يمسك الحكم'</li><li>'رواية مملة ، لم أستفد منها شيئا سوى من ناحية الأحداث المتوقعه أغلبها أو حتى من الناحية اللغوية ، لا أنكر أن هناك بعض العبارات الجميلة لكن لم توظف ف المكان ولا الزمن المناسب لذا فقدت روعتها ، يجب على الكاتب أن يكثف القراءة ويعيد ترتيب حساباته ، بالمناسبة هو يمتلك قلم جيد لكن لم يستخدم بشكل جميل .'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.4664 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit")
# Run inference
preds = model("مكان راحه البال . المكان نظيف جدا ومريح جدا. عدم وجود مكان للباركن السياره فالفندق")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 5 | 38.625 | 127 |
| Label | Training Sample Count |
|:---------|:----------------------|
| Negative | 8 |
| Positive | 8 |
| Mixed | 8 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0833 | 1 | 0.2047 | - |
| 1.0 | 12 | - | 0.2570 |
| 2.0 | 24 | - | 0.2721 |
| 3.0 | 36 | - | 0.2744 |
| 4.0 | 48 | - | 0.2741 |
### Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |