|
--- |
|
base_model: akhooli/sbert_ar_nli_500k_norm |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 'بلد مخيف، صار القتل بحجه الشرف متل قتل بعوضة، واللي بيخوف اكتر من اللي واقف |
|
مكتف ايديه ومش مساعد. وين كنآ، ووين وصلنآ، لمتى حنضل عايشين وساكتين! |
|
|
|
' |
|
- text: "من خلال المتابعة ..يتضح أن أكثر اللاعبين الذين يتم تسويقهم هم لاعبي امريكا\ |
|
\ الجنوبية وأقلهم الافارقة. \nمن خلال الواقع ..أكثر اللاعبين تهاونا ولعب على\ |
|
\ الواقف في آخر ٦ شهور من عقودهم هم لاعبي امريكا الجنوبية ." |
|
- text: ' علم الحزب يا فهمانه ما حطوا لانه عم يحكي وطنيا ومشان ماحدا متلك يعترض. اذا |
|
حطوا بتعترضي واذا ما حطوا كمان بتعترضي.' |
|
- text: "شيوعي \nعلماني \nمسيحي\nانصار سنه \nصوفي \nيمثلك التجمع \nلا يمثلك التجمع\ |
|
\ \nاهلا بكم جميعا فنحن نريد بناء وطن ❤" |
|
- text: كنا نهرب بحصة الرياضيات والمحاسبة وبنرجع آخر الحصة بخمس دئايئ ولمن تسئلنا |
|
المعلمة بنحكيلها كنا عند المديرة وبتسدئنا وضلينا |
|
inference: true |
|
model-index: |
|
- name: SetFit with akhooli/sbert_ar_nli_500k_norm |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8606060606060606 |
|
name: Accuracy |
|
--- |
|
|
|
This is a setfit hate speech detection model (86 % accuracy/f1) based on the [Ar Hate Speech dataset](https://huggingface.co/datasets/akhooli/ar_hs). |
|
|
|
Usage: |
|
```python |
|
pip install setfit |
|
from setfit import SetFitModel |
|
from unicodedata import normalize |
|
|
|
# Download model from Hub |
|
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs") |
|
# Run inference |
|
queries = [ |
|
"سكت دهراً و نطق كفراً", |
|
"الخلاف ﻻ يفسد للود قضية.", |
|
"أنت شخص منبوذ. احترم أسيادك.", |
|
"دع المكارم ﻻ ترحل لبغيتها واقعد فإنك أنت الطاعم الكاسي", |
|
] |
|
queries_n = [normalize('NFKC', query) for query in queries] |
|
preds = model.predict(queries_n) |
|
print(preds) |
|
# if you want to see the probabilities for each label |
|
probas = model.predict_proba(queries_n) |
|
print(probas) |
|
``` |
|
* [LinkedIn article](https://www.linkedin.com/posts/akhooli_arabic-hate-speech-detection-is-not-an-easy-activity-7261021456023609344-UJzM) |
|
|
|
The rest of this content is auto-generated. |
|
|
|
# SetFit with akhooli/sbert_ar_nli_500k_norm |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| positive | <ul><li>' سبحان الله الفلسطينيين شعب خاين في كل مكان \nلاحول ولا قوة إلا بالله'</li><li>'يا بيك عّم تخبرنا عن شي ما فينا تعملو نحن ماًعندنا نواب ولا وزراء بمثلونا بالدولة الا اذا زهقان وعبالك ليك'</li><li>'جوز كذابين منافقين...'</li></ul> | |
|
| negative | <ul><li>'ربي لا تجعلني أسيء الظن بأحد ولا تجعل في قلبي شيئا على أحد ، اللهم أسألك قلباً نقياً صافيا'</li><li>'هشام حداد عامل فيها جون ستيوارت'</li><li>' بحياة اختك من وين بتجيبي اخبارك؟؟ من صغري وانا عبالي كون... LINK'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8606 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs") |
|
# Run inference |
|
preds = model("شيوعي |
|
علماني |
|
مسيحي |
|
انصار سنه |
|
صوفي |
|
يمثلك التجمع |
|
لا يمثلك التجمع |
|
اهلا بكم جميعا فنحن نريد بناء وطن ❤") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 1 | 18.8448 | 185 | |
|
|
|
| Label | Training Sample Count | |
|
|:---------|:----------------------| |
|
| negative | 5200 | |
|
| positive | 4943 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (32, 32) |
|
- num_epochs: (1, 1) |
|
- max_steps: 6000 |
|
- sampling_strategy: undersampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- run_name: setfit_hate_52k_aub_6k |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0003 | 1 | 0.3151 | - | |
|
| 0.0333 | 100 | 0.2902 | - | |
|
| 0.0667 | 200 | 0.248 | - | |
|
| 0.1 | 300 | 0.2011 | - | |
|
| 0.1333 | 400 | 0.164 | - | |
|
| 0.1667 | 500 | 0.136 | - | |
|
| 0.2 | 600 | 0.1162 | - | |
|
| 0.2333 | 700 | 0.0915 | - | |
|
| 0.2667 | 800 | 0.0724 | - | |
|
| 0.3 | 900 | 0.0656 | - | |
|
| 0.3333 | 1000 | 0.05 | - | |
|
| 0.3667 | 1100 | 0.0454 | - | |
|
| 0.4 | 1200 | 0.0407 | - | |
|
| 0.4333 | 1300 | 0.0318 | - | |
|
| 0.4667 | 1400 | 0.0338 | - | |
|
| 0.5 | 1500 | 0.0289 | - | |
|
| 0.5333 | 1600 | 0.0266 | - | |
|
| 0.5667 | 1700 | 0.0238 | - | |
|
| 0.6 | 1800 | 0.02 | - | |
|
| 0.6333 | 1900 | 0.0167 | - | |
|
| 0.6667 | 2000 | 0.0168 | - | |
|
| 0.7 | 2100 | 0.0161 | - | |
|
| 0.7333 | 2200 | 0.0143 | - | |
|
| 0.7667 | 2300 | 0.0128 | - | |
|
| 0.8 | 2400 | 0.0128 | - | |
|
| 0.8333 | 2500 | 0.0146 | - | |
|
| 0.8667 | 2600 | 0.0113 | - | |
|
| 0.9 | 2700 | 0.0146 | - | |
|
| 0.9333 | 2800 | 0.0109 | - | |
|
| 0.9667 | 2900 | 0.0128 | - | |
|
| 1.0 | 3000 | 0.0101 | - | |
|
| 1.0333 | 3100 | 0.0126 | - | |
|
| 1.0667 | 3200 | 0.0092 | - | |
|
| 1.1 | 3300 | 0.0108 | - | |
|
| 1.1333 | 3400 | 0.0095 | - | |
|
| 1.1667 | 3500 | 0.0121 | - | |
|
| 1.2 | 3600 | 0.0088 | - | |
|
| 1.2333 | 3700 | 0.0086 | - | |
|
| 1.2667 | 3800 | 0.0075 | - | |
|
| 1.3 | 3900 | 0.009 | - | |
|
| 1.3333 | 4000 | 0.008 | - | |
|
| 1.3667 | 4100 | 0.0051 | - | |
|
| 1.4 | 4200 | 0.007 | - | |
|
| 1.4333 | 4300 | 0.0055 | - | |
|
| 1.4667 | 4400 | 0.0074 | - | |
|
| 1.5 | 4500 | 0.0065 | - | |
|
| 1.5333 | 4600 | 0.0086 | - | |
|
| 1.5667 | 4700 | 0.0064 | - | |
|
| 1.6 | 4800 | 0.0064 | - | |
|
| 1.6333 | 4900 | 0.0073 | - | |
|
| 1.6667 | 5000 | 0.0052 | - | |
|
| 1.7 | 5100 | 0.0056 | - | |
|
| 1.7333 | 5200 | 0.0059 | - | |
|
| 1.7667 | 5300 | 0.0048 | - | |
|
| 1.8 | 5400 | 0.0044 | - | |
|
| 1.8333 | 5500 | 0.003 | - | |
|
| 1.8667 | 5600 | 0.0045 | - | |
|
| 1.9 | 5700 | 0.0043 | - | |
|
| 1.9333 | 5800 | 0.0042 | - | |
|
| 1.9667 | 5900 | 0.0029 | - | |
|
| 2.0 | 6000 | 0.0033 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- SetFit: 1.2.0.dev0 |
|
- Sentence Transformers: 3.3.0 |
|
- Transformers: 4.45.1 |
|
- PyTorch: 2.4.0 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |