File size: 12,326 Bytes
e75eed0 b20374a e75eed0 b20374a e75eed0 34ae0c9 04ef65b 9f85d72 2e57135 04ef65b e75eed0 867ad1e e75eed0 867ad1e e75eed0 867ad1e b20374a 867ad1e e75eed0 b20374a e75eed0 b20374a e75eed0 4b4134a b20374a e75eed0 b20374a e75eed0 04dd0b8 e75eed0 b20374a e75eed0 81358f8 b20374a e75eed0 04dd0b8 e75eed0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
---
base_model: akhooli/sbert_ar_nli_500k_norm
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'بلد مخيف، صار القتل بحجه الشرف متل قتل بعوضة، واللي بيخوف اكتر من اللي واقف
مكتف ايديه ومش مساعد. وين كنآ، ووين وصلنآ، لمتى حنضل عايشين وساكتين!
'
- text: "من خلال المتابعة ..يتضح أن أكثر اللاعبين الذين يتم تسويقهم هم لاعبي امريكا\
\ الجنوبية وأقلهم الافارقة. \nمن خلال الواقع ..أكثر اللاعبين تهاونا ولعب على\
\ الواقف في آخر ٦ شهور من عقودهم هم لاعبي امريكا الجنوبية ."
- text: ' علم الحزب يا فهمانه ما حطوا لانه عم يحكي وطنيا ومشان ماحدا متلك يعترض. اذا
حطوا بتعترضي واذا ما حطوا كمان بتعترضي.'
- text: "شيوعي \nعلماني \nمسيحي\nانصار سنه \nصوفي \nيمثلك التجمع \nلا يمثلك التجمع\
\ \nاهلا بكم جميعا فنحن نريد بناء وطن ❤"
- text: كنا نهرب بحصة الرياضيات والمحاسبة وبنرجع آخر الحصة بخمس دئايئ ولمن تسئلنا
المعلمة بنحكيلها كنا عند المديرة وبتسدئنا وضلينا
inference: true
model-index:
- name: SetFit with akhooli/sbert_ar_nli_500k_norm
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8606060606060606
name: Accuracy
---
This is a setfit hate speech detection model (86 % accuracy/f1) based on the [Ar Hate Speech dataset](https://huggingface.co/datasets/akhooli/ar_hs).
Usage:
```python
pip install setfit
from setfit import SetFitModel
from unicodedata import normalize
# Download model from Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs")
# Run inference
queries = [
"سكت دهراً و نطق كفراً",
"الخلاف ﻻ يفسد للود قضية.",
"أنت شخص منبوذ. احترم أسيادك.",
"دع المكارم ﻻ ترحل لبغيتها واقعد فإنك أنت الطاعم الكاسي",
]
queries_n = [normalize('NFKC', query) for query in queries]
preds = model.predict(queries_n)
print(preds)
# if you want to see the probabilities for each label
probas = model.predict_proba(queries_n)
print(probas)
```
* [LinkedIn article](https://www.linkedin.com/posts/akhooli_arabic-hate-speech-detection-is-not-an-easy-activity-7261021456023609344-UJzM)
The rest of this content is auto-generated.
# SetFit with akhooli/sbert_ar_nli_500k_norm
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| positive | <ul><li>' سبحان الله الفلسطينيين شعب خاين في كل مكان \nلاحول ولا قوة إلا بالله'</li><li>'يا بيك عّم تخبرنا عن شي ما فينا تعملو نحن ماًعندنا نواب ولا وزراء بمثلونا بالدولة الا اذا زهقان وعبالك ليك'</li><li>'جوز كذابين منافقين...'</li></ul> |
| negative | <ul><li>'ربي لا تجعلني أسيء الظن بأحد ولا تجعل في قلبي شيئا على أحد ، اللهم أسألك قلباً نقياً صافيا'</li><li>'هشام حداد عامل فيها جون ستيوارت'</li><li>' بحياة اختك من وين بتجيبي اخبارك؟؟ من صغري وانا عبالي كون... LINK'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8606 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs")
# Run inference
preds = model("شيوعي
علماني
مسيحي
انصار سنه
صوفي
يمثلك التجمع
لا يمثلك التجمع
اهلا بكم جميعا فنحن نريد بناء وطن ❤")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 18.8448 | 185 |
| Label | Training Sample Count |
|:---------|:----------------------|
| negative | 5200 |
| positive | 4943 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: 6000
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- run_name: setfit_hate_52k_aub_6k
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0003 | 1 | 0.3151 | - |
| 0.0333 | 100 | 0.2902 | - |
| 0.0667 | 200 | 0.248 | - |
| 0.1 | 300 | 0.2011 | - |
| 0.1333 | 400 | 0.164 | - |
| 0.1667 | 500 | 0.136 | - |
| 0.2 | 600 | 0.1162 | - |
| 0.2333 | 700 | 0.0915 | - |
| 0.2667 | 800 | 0.0724 | - |
| 0.3 | 900 | 0.0656 | - |
| 0.3333 | 1000 | 0.05 | - |
| 0.3667 | 1100 | 0.0454 | - |
| 0.4 | 1200 | 0.0407 | - |
| 0.4333 | 1300 | 0.0318 | - |
| 0.4667 | 1400 | 0.0338 | - |
| 0.5 | 1500 | 0.0289 | - |
| 0.5333 | 1600 | 0.0266 | - |
| 0.5667 | 1700 | 0.0238 | - |
| 0.6 | 1800 | 0.02 | - |
| 0.6333 | 1900 | 0.0167 | - |
| 0.6667 | 2000 | 0.0168 | - |
| 0.7 | 2100 | 0.0161 | - |
| 0.7333 | 2200 | 0.0143 | - |
| 0.7667 | 2300 | 0.0128 | - |
| 0.8 | 2400 | 0.0128 | - |
| 0.8333 | 2500 | 0.0146 | - |
| 0.8667 | 2600 | 0.0113 | - |
| 0.9 | 2700 | 0.0146 | - |
| 0.9333 | 2800 | 0.0109 | - |
| 0.9667 | 2900 | 0.0128 | - |
| 1.0 | 3000 | 0.0101 | - |
| 1.0333 | 3100 | 0.0126 | - |
| 1.0667 | 3200 | 0.0092 | - |
| 1.1 | 3300 | 0.0108 | - |
| 1.1333 | 3400 | 0.0095 | - |
| 1.1667 | 3500 | 0.0121 | - |
| 1.2 | 3600 | 0.0088 | - |
| 1.2333 | 3700 | 0.0086 | - |
| 1.2667 | 3800 | 0.0075 | - |
| 1.3 | 3900 | 0.009 | - |
| 1.3333 | 4000 | 0.008 | - |
| 1.3667 | 4100 | 0.0051 | - |
| 1.4 | 4200 | 0.007 | - |
| 1.4333 | 4300 | 0.0055 | - |
| 1.4667 | 4400 | 0.0074 | - |
| 1.5 | 4500 | 0.0065 | - |
| 1.5333 | 4600 | 0.0086 | - |
| 1.5667 | 4700 | 0.0064 | - |
| 1.6 | 4800 | 0.0064 | - |
| 1.6333 | 4900 | 0.0073 | - |
| 1.6667 | 5000 | 0.0052 | - |
| 1.7 | 5100 | 0.0056 | - |
| 1.7333 | 5200 | 0.0059 | - |
| 1.7667 | 5300 | 0.0048 | - |
| 1.8 | 5400 | 0.0044 | - |
| 1.8333 | 5500 | 0.003 | - |
| 1.8667 | 5600 | 0.0045 | - |
| 1.9 | 5700 | 0.0043 | - |
| 1.9333 | 5800 | 0.0042 | - |
| 1.9667 | 5900 | 0.0029 | - |
| 2.0 | 6000 | 0.0033 | - |
### Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.3.0
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |