mt5-small-finetuned

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0192
  • Rouge1: 0.3780
  • Rouge2: 0.1970
  • Rougel: 0.3508
  • Rougelsum: 0.3527

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
21.4055 1.0 12 13.7151 0.0189 0.0084 0.0147 0.0189
17.1792 2.0 24 11.5227 0.0189 0.0084 0.0147 0.0189
15.0485 3.0 36 9.5193 0.0 0.0 0.0 0.0
13.0405 4.0 48 6.8529 0.0102 0.0 0.0102 0.0102
11.7418 5.0 60 5.8151 0.0331 0.0084 0.0303 0.0335
9.659 6.0 72 5.6024 0.0344 0.0084 0.0344 0.0357
8.6025 7.0 84 4.7311 0.0273 0.0036 0.0269 0.0277
7.5747 8.0 96 3.8319 0.0510 0.0031 0.0483 0.0456
6.916 9.0 108 3.5873 0.0578 0.0 0.0540 0.0520
6.3394 10.0 120 3.4854 0.0788 0.0076 0.0792 0.0794
5.5822 11.0 132 3.2956 0.0752 0.0158 0.0694 0.0697
5.0731 12.0 144 3.0977 0.0524 0.0115 0.0470 0.0475
4.7234 13.0 156 2.9120 0.0331 0.0105 0.0279 0.0285
4.3512 14.0 168 2.7709 0.0527 0.0304 0.0375 0.0377
4.136 15.0 180 2.6770 0.0616 0.0331 0.0494 0.0495
3.8591 16.0 192 2.5894 0.1028 0.0473 0.0817 0.0826
3.6558 17.0 204 2.5183 0.1814 0.0828 0.1541 0.1532
3.4821 18.0 216 2.4590 0.1940 0.0838 0.1618 0.1621
3.3248 19.0 228 2.3901 0.2062 0.0856 0.1667 0.1676
3.194 20.0 240 2.3352 0.1971 0.0918 0.1672 0.1684
3.0883 21.0 252 2.2934 0.1971 0.0918 0.1672 0.1684
2.9907 22.0 264 2.2471 0.2039 0.0943 0.1660 0.1675
2.9249 23.0 276 2.2038 0.1904 0.0843 0.1515 0.1537
2.8418 24.0 288 2.1643 0.1995 0.0939 0.1686 0.1705
2.7667 25.0 300 2.1296 0.2233 0.1002 0.1882 0.1890
2.7157 26.0 312 2.1176 0.3513 0.1825 0.3422 0.3432
2.7058 27.0 324 2.0969 0.3525 0.1803 0.3444 0.3457
2.5703 28.0 336 2.0761 0.3507 0.1847 0.3395 0.3409
2.4907 29.0 348 2.0688 0.3379 0.1741 0.3281 0.3290
2.3974 30.0 360 2.0706 0.3520 0.1872 0.3391 0.3402
2.4584 31.0 372 2.0635 0.3465 0.1840 0.3332 0.3344
2.3775 32.0 384 2.0560 0.3525 0.1826 0.3390 0.3411
2.4014 33.0 396 2.0544 0.3585 0.1860 0.3456 0.3469
2.3388 34.0 408 2.0583 0.3607 0.1865 0.3483 0.3496
2.3288 35.0 420 2.0487 0.3551 0.1835 0.3368 0.3379
2.3233 36.0 432 2.0394 0.3569 0.1803 0.3313 0.3326
2.2882 37.0 444 2.0361 0.3585 0.1867 0.3422 0.3446
2.2109 38.0 456 2.0324 0.3565 0.1858 0.3413 0.3429
2.212 39.0 468 2.0327 0.3585 0.1867 0.3422 0.3446
2.2059 40.0 480 2.0310 0.3612 0.1849 0.3421 0.3436
2.1866 41.0 492 2.0352 0.3612 0.1849 0.3421 0.3436
2.2122 42.0 504 2.0369 0.3612 0.1849 0.3421 0.3436
2.1305 43.0 516 2.0351 0.3604 0.1863 0.3419 0.3443
2.1174 44.0 528 2.0358 0.3578 0.1864 0.3397 0.3413
2.0972 45.0 540 2.0356 0.3602 0.1881 0.3390 0.3405
2.1051 46.0 552 2.0325 0.3606 0.1861 0.3359 0.3376
2.0632 47.0 564 2.0329 0.3606 0.1861 0.3359 0.3376
2.0601 48.0 576 2.0301 0.3621 0.1857 0.3346 0.3364
2.0487 49.0 588 2.0301 0.3621 0.1857 0.3346 0.3364
2.0538 50.0 600 2.0314 0.3617 0.1876 0.3380 0.3399
2.071 51.0 612 2.0308 0.3608 0.1871 0.3368 0.3385
2.0415 52.0 624 2.0283 0.3777 0.1993 0.3546 0.3559
2.007 53.0 636 2.0259 0.3777 0.1993 0.3546 0.3559
2.0238 54.0 648 2.0232 0.3777 0.1993 0.3546 0.3559
2.074 55.0 660 2.0207 0.3780 0.1970 0.3508 0.3527
2.0497 56.0 672 2.0202 0.3780 0.1970 0.3508 0.3527
2.0075 57.0 684 2.0200 0.3780 0.1970 0.3508 0.3527
2.0837 58.0 696 2.0193 0.3780 0.1970 0.3508 0.3527
2.0277 59.0 708 2.0194 0.3780 0.1970 0.3508 0.3527
2.0912 60.0 720 2.0192 0.3780 0.1970 0.3508 0.3527

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ak2603/mt5-small-finetuned

Base model

google/mt5-small
Finetuned
(392)
this model