Uploaded model

  • Developed by: ak0327
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

How to use


def load_model(model_name):
  # QLoRA config
  bnb_config = BitsAndBytesConfig(
      load_in_4bit=True,
      bnb_4bit_quant_type="nf4",
      bnb_4bit_compute_dtype=torch.bfloat16,
      bnb_4bit_use_double_quant=False,
  )

  # Load model
  model = AutoModelForCausalLM.from_pretrained(
      model_name,
      quantization_config=bnb_config,
      device_map="auto",
      token=HF_TOKEN
  )

  # Load tokenizer
  tokenizer = AutoTokenizer.from_pretrained(
      model_name,
      trust_remote_code=True,
      token=HF_TOKEN
  )
  return model, tokenizer


def inference(datasets, model, tokenizer):
  _results = []
  for data in tqdm(datasets):
      input = data["input"]

      prompt = f"""### 指示
      {input}
      ### 回答:
      """

      encoded_input = tokenizer.encode_plus(
          prompt,
          add_special_tokens=False,
          return_tensors="pt",
          padding=True,
          truncation=True,
      ).to(model.device)

      tokenized_input = encoded_input["input_ids"]
      attention_mask = encoded_input["attention_mask"]

      with torch.no_grad():
          outputs = model.generate(
              tokenized_input,
              attention_mask=attention_mask,
              max_new_tokens=100,
              do_sample=False,
              repetition_penalty=1.2,
              pad_token_id=tokenizer.pad_token_id
          )[0]

      output = tokenizer.decode(
          outputs[tokenized_input.size(1):],
          skip_special_tokens=True
          )

      _results.append({
          "task_id": data["task_id"],
          "input": input,
          "output": output
      })
  return _results


model_name = "ak0327/llm-jp-3-13b-finetune-2"

model, tokenizer = load_model(model_name)
datasets = load_test_datasets()  # your datasets
results = inference(model_name, datasets, model, tokenizer)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ak0327/llm-jp-3-13b-finetune-2

Finetuned
(1129)
this model