p-tuning-roberta-large-with-mrpc

This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5925
  • Accuracy: 0.6957
  • F1: 0.7992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 58 0.6199 0.6754 0.8003
No log 2.0 116 0.6082 0.6939 0.8066
No log 3.0 174 0.6217 0.6725 0.8013
No log 4.0 232 0.6317 0.6667 0.7993
No log 5.0 290 0.6402 0.6499 0.7703
No log 6.0 348 0.6219 0.6678 0.7994
No log 7.0 406 0.6287 0.6684 0.7556
No log 8.0 464 0.5914 0.6991 0.8051
0.6347 9.0 522 0.5826 0.6875 0.8022
0.6347 10.0 580 0.6129 0.6875 0.7764
0.6347 11.0 638 0.5942 0.6922 0.8036
0.6347 12.0 696 0.5975 0.6887 0.7822
0.6347 13.0 754 0.5943 0.6899 0.7963
0.6347 14.0 812 0.5863 0.6968 0.8039
0.6347 15.0 870 0.5880 0.6945 0.7998
0.6347 16.0 928 0.5967 0.6858 0.7982
0.6347 17.0 986 0.5951 0.6968 0.8020
0.5717 18.0 1044 0.5931 0.7043 0.7981
0.5717 19.0 1102 0.5936 0.6974 0.8006
0.5717 20.0 1160 0.5925 0.6957 0.7992

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for aisuko/p-tuning-roberta-large-with-mrpc

Adapter
(62)
this model