metadata
license: mit
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: nlp_summarization_project
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xsum
type: xsum
config: default
split: train[:2000]
args: default
metrics:
- name: Rouge1
type: rouge
value: 28.5817
nlp_summarization_project
This model is a fine-tuned version of facebook/bart-large-cnn on the xsum dataset. It achieves the following results on the evaluation set:
- Loss: 3.2856
- Rouge1: 28.5817
- Rouge2: 9.6715
- Rougel: 20.5872
- Rougelsum: 21.6921
- Gen Len: 65.425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- label_smoothing_factor: 0.1
Training results
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3