Model Description

git hub : https://github.com/aiqwe/instruction-tuning-with-rag-example
Instruction Tuning์˜ ํ•™์Šต์„ ์œ„ํ•ด ์˜ˆ์‹œ๋กœ ํ•™์Šตํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
gemma-2b-it ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์•ฝ 1๋งŒ๊ฐœ์˜ ๋ถ€๋™์‚ฐ ๊ด€๋ จ Instruction ๋ฐ์ดํ„ฐ์…‹์„ ํ•™์Šตํ•˜์˜€์Šต๋‹ˆ๋‹ค.
ํ•™์Šต ์ฝ”๋“œ๋Š” ์œ„ git hub๋ฅผ ์ฐธ์กฐํ•ด์ฃผ์„ธ์š”.

Usage

Inference on GPU example

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
model = AutoModelForCausalLM.from_pretrained(
    "aiqwe/gemma-2b-it-example-v1",
    device_map="cuda",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2"
)

input_text = "์•„ํŒŒํŠธ ์žฌ๊ฑด์ถ•์— ๋Œ€ํ•ด ์•Œ๋ ค์ค˜."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=512)
print(tokenizer.decode(outputs[0]))

Inference on CPU example

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
model = AutoModelForCausalLM.from_pretrained(
    "aiqwe/gemma-2b-it-example-v1",
    device_map="cpu",
    torch_dtype=torch.bfloat16
)

input_text = "์•„ํŒŒํŠธ ์žฌ๊ฑด์ถ•์— ๋Œ€ํ•ด ์•Œ๋ ค์ค˜."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=512)
print(tokenizer.decode(outputs[0]))

Inference on GPU with embedded function example

๋‚ด์žฅ๋œ ํ•จ์ˆ˜๋กœ ๋„ค์ด๋ฒ„ ๊ฒ€์ƒ‰ API๋ฅผ ํ†ตํ•ด RAG๋ฅผ ์ง€์›๋ฐ›์Šต๋‹ˆ๋‹ค.

from transformers import AutoTokenizer, AutoModelForCausalLM 
from utils import generate

tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
model = AutoModelForCausalLM.from_pretrained(
    "aiqwe/gemma-2b-it-example-v1",
    device_map="cuda",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2"
)

rag_config = {
    "api_client_id": userdata.get('NAVER_API_ID'),
    "api_client_secret": userdata.get('NAVER_API_SECRET')
}
completion = generate(
    model=model,
    tokenizer=tokenizer,
    query=query,
    max_new_tokens=512,
    rag=True,
    rag_config=rag_config
)
print(completion)

Chat Template

Gemma ๋ชจ๋ธ์˜ Chat Template์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
gemma-2b-it Chat Template

input_text = "์•„ํŒŒํŠธ ์žฌ๊ฑด์ถ•์— ๋Œ€ํ•ด ์•Œ๋ ค์ค˜."

input_text = tokenizer.apply_chat_template(
        conversation=[
            {"role": "user", "content": input_text}
        ],
        add_generate_prompt=True,
        return_tensors="pt"
    ).to(model.device)

outputs = model.generate(input_text, max_new_tokens=512, repetition_penalty = 1.5)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))

Training information

ํ•™์Šต์€ ๊ตฌ๊ธ€ ์ฝ”๋žฉ L4 Single GPU๋ฅผ ํ™œ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค.

๊ตฌ๋ถ„ ๋‚ด์šฉ
ํ™˜๊ฒฝ Google Colab
GPU L4(22.5GB)
์‚ฌ์šฉ VRAM ์•ฝ 13.8GB
dtype bfloat16
Attention flash attention2
Tuning Lora(r=4, alpha=32)
Learning Rate 1e-4
LRScheduler Cosine
Optimizer adamw_torch_fused
batch_size 4
gradient_accumulation_steps 2
Downloads last month
36
Inference API
Unable to determine this modelโ€™s pipeline type. Check the docs .

Model tree for aiqwe/gemma-2b-it-example-v1

Adapter
(19)
this model