PTS-Bart-Large-CNN

This model is a fine-tuned version of facebook/bart-large-cnn on the PTS dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1760
  • Rouge1: 0.6551
  • Rouge2: 0.4332
  • Rougel: 0.5543
  • Rougelsum: 0.5541
  • Gen Len: 80.0886

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 220 0.8239 0.6263 0.3973 0.5238 0.5237 84.2023
No log 2.0 440 0.8201 0.6461 0.4184 0.5417 0.5416 81.1659
0.7121 3.0 660 0.8661 0.6479 0.4226 0.5448 0.5454 80.5409
0.7121 4.0 880 0.9784 0.6474 0.4242 0.5424 0.5425 82.2932
0.2619 5.0 1100 1.0645 0.655 0.4327 0.5517 0.5517 80.8386
0.2619 6.0 1320 1.1098 0.6548 0.4339 0.5542 0.5543 81.3545
0.1124 7.0 1540 1.1528 0.6528 0.4298 0.5511 0.551 80.5705
0.1124 8.0 1760 1.1760 0.6551 0.4332 0.5543 0.5541 80.0886

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
390
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ahmedmbutt/PTS-Bart-Large-CNN

Finetuned
(324)
this model

Dataset used to train ahmedmbutt/PTS-Bart-Large-CNN

Space using ahmedmbutt/PTS-Bart-Large-CNN 1

Evaluation results