metadata
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: qwen2.5_0.5b_1M_stack_16kcw_2ep
results: []
qwen2.5_0.5b_1M_stack_16kcw_2ep
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-0.5B-Instruct on the anghabench_1M_1, the anghabench_1M_2 and the stack datasets. It achieves the following results on the evaluation set:
- Loss: 0.0020
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0064 | 0.3912 | 61000 | 0.0041 |
0.0029 | 0.7825 | 122000 | 0.0032 |
0.0023 | 1.1737 | 183000 | 0.0024 |
0.0018 | 1.5649 | 244000 | 0.0021 |
0.0011 | 1.9562 | 305000 | 0.0020 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3