Psoriasis-500-100aug-224-beit-large

This model is a fine-tuned version of microsoft/beit-large-patch16-224-pt22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1823
  • Accuracy: 0.7991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8236 0.9973 92 1.1536 0.6358
0.4282 1.9946 184 0.8848 0.7389
0.2305 2.9919 276 0.9811 0.7258
0.1206 4.0 369 0.8858 0.7808
0.1107 4.9973 461 1.1129 0.7397
0.0319 5.9946 553 1.1625 0.7703
0.0073 6.9919 645 1.1938 0.7895
0.0078 8.0 738 1.3031 0.7790
0.0013 8.9973 830 1.2117 0.7974
0.002 9.9729 920 1.1823 0.7991

Classification Report

Class Precision (%) Recall (%) F1-Score (%) Support
Abnormal 66 62 64 108
Erythrodermic 96 76 85 100
Guttate 95 83 89 114
Inverse 83 91 87 108
Nail 81 84 83 99
Normal 81 79 80 82
Not Define 98 95 96 92
Palm Soles 82 88 85 102
Plaque 70 88 78 84
Psoriatic Arthritis 78 74 76 104
Pustular 71 76 74 112
Scalp 84 86 85 80
Accuracy 82 1185
Macro Avg 82 82 82 1185
Weighted Avg 82 82 82 1185

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
303M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ahmedesmail16/Psoriasis-500-100aug-224-beit-large

Finetuned
(2)
this model

Evaluation results