0.50-200Train-100Test-swinv2-base

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window12-192-22k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1459
  • Accuracy: 0.8183

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 17

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7214 0.9931 36 1.0786 0.6515
0.6184 1.9862 72 0.7491 0.7651
0.357 2.9793 108 0.7632 0.7764
0.2085 4.0 145 0.8125 0.7860
0.1343 4.9931 181 0.7920 0.7974
0.0641 5.9862 217 0.8851 0.7860
0.0515 6.9793 253 1.0784 0.7817
0.041 8.0 290 1.0600 0.7965
0.0338 8.9931 326 1.0860 0.8131
0.013 9.9862 362 1.0956 0.8148
0.016 10.9793 398 1.2115 0.7991
0.0154 12.0 435 1.1470 0.8105
0.011 12.9931 471 1.1045 0.8105
0.0027 13.9862 507 1.1310 0.8096
0.0042 14.9793 543 1.1808 0.8227
0.0016 16.0 580 1.1575 0.8157
0.0007 16.8828 612 1.1459 0.8183

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
86.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ahmedesmail16/0.50-200Train-100Test-swinv2-base

Finetuned
(18)
this model