agier9's picture
Upload README.md with huggingface_hub
0a234d9 verified
metadata
tags:
  - mteb
  - sentence-transformers
  - transformers
  - Qwen
  - sentence-similarity
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: gte-qwen1.5-7b
    results:
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en)
          type: mteb/amazon_counterfactual
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 83.16417910447761
          - type: ap
            value: 49.37655308937739
          - type: f1
            value: 77.52987230462615
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonPolarityClassification
          type: mteb/amazon_polarity
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 96.6959
          - type: ap
            value: 94.90885739242472
          - type: f1
            value: 96.69477648952649
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (en)
          type: mteb/amazon_reviews_multi
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 62.168
          - type: f1
            value: 60.411431278343755
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: mteb/arguana
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 36.415
          - type: map_at_10
            value: 53.505
          - type: map_at_100
            value: 54.013
          - type: map_at_1000
            value: 54.013
          - type: map_at_3
            value: 48.459
          - type: map_at_5
            value: 51.524
          - type: mrr_at_1
            value: 36.842000000000006
          - type: mrr_at_10
            value: 53.679
          - type: mrr_at_100
            value: 54.17999999999999
          - type: mrr_at_1000
            value: 54.17999999999999
          - type: mrr_at_3
            value: 48.613
          - type: mrr_at_5
            value: 51.696
          - type: ndcg_at_1
            value: 36.415
          - type: ndcg_at_10
            value: 62.644999999999996
          - type: ndcg_at_100
            value: 64.60000000000001
          - type: ndcg_at_1000
            value: 64.60000000000001
          - type: ndcg_at_3
            value: 52.44799999999999
          - type: ndcg_at_5
            value: 57.964000000000006
          - type: precision_at_1
            value: 36.415
          - type: precision_at_10
            value: 9.161
          - type: precision_at_100
            value: 0.996
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 21.337
          - type: precision_at_5
            value: 15.476999999999999
          - type: recall_at_1
            value: 36.415
          - type: recall_at_10
            value: 91.607
          - type: recall_at_100
            value: 99.644
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 64.011
          - type: recall_at_5
            value: 77.383
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringP2P
          type: mteb/arxiv-clustering-p2p
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 56.40183100758549
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringS2S
          type: mteb/arxiv-clustering-s2s
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 51.44814171373338
      - task:
          type: Reranking
        dataset:
          name: MTEB AskUbuntuDupQuestions
          type: mteb/askubuntudupquestions-reranking
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 66.00208703259058
          - type: mrr
            value: 78.95165545442553
      - task:
          type: STS
        dataset:
          name: MTEB BIOSSES
          type: mteb/biosses-sts
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 82.12591694410098
          - type: cos_sim_spearman
            value: 81.11570369802254
          - type: euclidean_pearson
            value: 80.91709076204458
          - type: euclidean_spearman
            value: 81.11570369802254
          - type: manhattan_pearson
            value: 80.71719561024605
          - type: manhattan_spearman
            value: 81.21510355327713
      - task:
          type: Classification
        dataset:
          name: MTEB Banking77Classification
          type: mteb/banking77
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 81.67857142857142
          - type: f1
            value: 80.84103272994895
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringP2P
          type: mteb/biorxiv-clustering-p2p
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 49.008657468552016
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringS2S
          type: mteb/biorxiv-clustering-s2s
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 45.05901064421589
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackAndroidRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 32.694
          - type: map_at_10
            value: 43.895
          - type: map_at_100
            value: 45.797
          - type: map_at_1000
            value: 45.922000000000004
          - type: map_at_3
            value: 40.141
          - type: map_at_5
            value: 42.077
          - type: mrr_at_1
            value: 40.2
          - type: mrr_at_10
            value: 50.11
          - type: mrr_at_100
            value: 51.101
          - type: mrr_at_1000
            value: 51.13100000000001
          - type: mrr_at_3
            value: 47.735
          - type: mrr_at_5
            value: 48.922
          - type: ndcg_at_1
            value: 40.2
          - type: ndcg_at_10
            value: 50.449999999999996
          - type: ndcg_at_100
            value: 56.85
          - type: ndcg_at_1000
            value: 58.345
          - type: ndcg_at_3
            value: 45.261
          - type: ndcg_at_5
            value: 47.298
          - type: precision_at_1
            value: 40.2
          - type: precision_at_10
            value: 9.742
          - type: precision_at_100
            value: 1.6480000000000001
          - type: precision_at_1000
            value: 0.214
          - type: precision_at_3
            value: 21.841
          - type: precision_at_5
            value: 15.68
          - type: recall_at_1
            value: 32.694
          - type: recall_at_10
            value: 62.751999999999995
          - type: recall_at_100
            value: 88.619
          - type: recall_at_1000
            value: 97.386
          - type: recall_at_3
            value: 47.087
          - type: recall_at_5
            value: 53.108999999999995
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackEnglishRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 27.849
          - type: map_at_10
            value: 37.938
          - type: map_at_100
            value: 39.211
          - type: map_at_1000
            value: 39.333
          - type: map_at_3
            value: 35.314
          - type: map_at_5
            value: 36.666
          - type: mrr_at_1
            value: 34.904
          - type: mrr_at_10
            value: 43.869
          - type: mrr_at_100
            value: 44.614
          - type: mrr_at_1000
            value: 44.662
          - type: mrr_at_3
            value: 41.815000000000005
          - type: mrr_at_5
            value: 42.943
          - type: ndcg_at_1
            value: 34.904
          - type: ndcg_at_10
            value: 43.605
          - type: ndcg_at_100
            value: 48.339999999999996
          - type: ndcg_at_1000
            value: 50.470000000000006
          - type: ndcg_at_3
            value: 39.835
          - type: ndcg_at_5
            value: 41.364000000000004
          - type: precision_at_1
            value: 34.904
          - type: precision_at_10
            value: 8.222999999999999
          - type: precision_at_100
            value: 1.332
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 19.575
          - type: precision_at_5
            value: 13.58
          - type: recall_at_1
            value: 27.849
          - type: recall_at_10
            value: 53.635
          - type: recall_at_100
            value: 73.932
          - type: recall_at_1000
            value: 87.29599999999999
          - type: recall_at_3
            value: 42.019
          - type: recall_at_5
            value: 46.58
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackGamingRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 29.182999999999996
          - type: map_at_10
            value: 41.233
          - type: map_at_100
            value: 42.52
          - type: map_at_1000
            value: 42.589
          - type: map_at_3
            value: 37.284
          - type: map_at_5
            value: 39.586
          - type: mrr_at_1
            value: 33.793
          - type: mrr_at_10
            value: 44.572
          - type: mrr_at_100
            value: 45.456
          - type: mrr_at_1000
            value: 45.497
          - type: mrr_at_3
            value: 41.275
          - type: mrr_at_5
            value: 43.278
          - type: ndcg_at_1
            value: 33.793
          - type: ndcg_at_10
            value: 47.823
          - type: ndcg_at_100
            value: 52.994
          - type: ndcg_at_1000
            value: 54.400000000000006
          - type: ndcg_at_3
            value: 40.82
          - type: ndcg_at_5
            value: 44.426
          - type: precision_at_1
            value: 33.793
          - type: precision_at_10
            value: 8.312999999999999
          - type: precision_at_100
            value: 1.191
          - type: precision_at_1000
            value: 0.136
          - type: precision_at_3
            value: 18.662
          - type: precision_at_5
            value: 13.668
          - type: recall_at_1
            value: 29.182999999999996
          - type: recall_at_10
            value: 64.14999999999999
          - type: recall_at_100
            value: 86.533
          - type: recall_at_1000
            value: 96.492
          - type: recall_at_3
            value: 45.7
          - type: recall_at_5
            value: 54.330999999999996
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackGisRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 24.389
          - type: map_at_10
            value: 33.858
          - type: map_at_100
            value: 35.081
          - type: map_at_1000
            value: 35.161
          - type: map_at_3
            value: 30.793
          - type: map_at_5
            value: 32.336
          - type: mrr_at_1
            value: 27.006000000000004
          - type: mrr_at_10
            value: 36.378
          - type: mrr_at_100
            value: 37.345
          - type: mrr_at_1000
            value: 37.405
          - type: mrr_at_3
            value: 33.578
          - type: mrr_at_5
            value: 34.991
          - type: ndcg_at_1
            value: 27.006000000000004
          - type: ndcg_at_10
            value: 39.612
          - type: ndcg_at_100
            value: 45.216
          - type: ndcg_at_1000
            value: 47.12
          - type: ndcg_at_3
            value: 33.566
          - type: ndcg_at_5
            value: 36.105
          - type: precision_at_1
            value: 27.006000000000004
          - type: precision_at_10
            value: 6.372999999999999
          - type: precision_at_100
            value: 0.968
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 14.501
          - type: precision_at_5
            value: 10.169
          - type: recall_at_1
            value: 24.389
          - type: recall_at_10
            value: 55.131
          - type: recall_at_100
            value: 80.315
          - type: recall_at_1000
            value: 94.284
          - type: recall_at_3
            value: 38.643
          - type: recall_at_5
            value: 44.725
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackMathematicaRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 15.845999999999998
          - type: map_at_10
            value: 25.019000000000002
          - type: map_at_100
            value: 26.478
          - type: map_at_1000
            value: 26.598
          - type: map_at_3
            value: 21.595
          - type: map_at_5
            value: 23.335
          - type: mrr_at_1
            value: 20.274
          - type: mrr_at_10
            value: 29.221000000000004
          - type: mrr_at_100
            value: 30.354999999999997
          - type: mrr_at_1000
            value: 30.419
          - type: mrr_at_3
            value: 26.161
          - type: mrr_at_5
            value: 27.61
          - type: ndcg_at_1
            value: 20.274
          - type: ndcg_at_10
            value: 31.014000000000003
          - type: ndcg_at_100
            value: 37.699
          - type: ndcg_at_1000
            value: 40.363
          - type: ndcg_at_3
            value: 24.701999999999998
          - type: ndcg_at_5
            value: 27.261999999999997
          - type: precision_at_1
            value: 20.274
          - type: precision_at_10
            value: 6.219
          - type: precision_at_100
            value: 1.101
          - type: precision_at_1000
            value: 0.146
          - type: precision_at_3
            value: 12.231
          - type: precision_at_5
            value: 9.129
          - type: recall_at_1
            value: 15.845999999999998
          - type: recall_at_10
            value: 45.358
          - type: recall_at_100
            value: 74.232
          - type: recall_at_1000
            value: 92.985
          - type: recall_at_3
            value: 28.050000000000004
          - type: recall_at_5
            value: 34.588
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackPhysicsRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 33.808
          - type: map_at_10
            value: 46.86
          - type: map_at_100
            value: 48.237
          - type: map_at_1000
            value: 48.331
          - type: map_at_3
            value: 42.784
          - type: map_at_5
            value: 45.015
          - type: mrr_at_1
            value: 41.771
          - type: mrr_at_10
            value: 52.35300000000001
          - type: mrr_at_100
            value: 53.102000000000004
          - type: mrr_at_1000
            value: 53.132999999999996
          - type: mrr_at_3
            value: 49.663000000000004
          - type: mrr_at_5
            value: 51.27
          - type: ndcg_at_1
            value: 41.771
          - type: ndcg_at_10
            value: 53.562
          - type: ndcg_at_100
            value: 58.809999999999995
          - type: ndcg_at_1000
            value: 60.23
          - type: ndcg_at_3
            value: 47.514
          - type: ndcg_at_5
            value: 50.358999999999995
          - type: precision_at_1
            value: 41.771
          - type: precision_at_10
            value: 10.038
          - type: precision_at_100
            value: 1.473
          - type: precision_at_1000
            value: 0.17600000000000002
          - type: precision_at_3
            value: 22.875
          - type: precision_at_5
            value: 16.477
          - type: recall_at_1
            value: 33.808
          - type: recall_at_10
            value: 67.721
          - type: recall_at_100
            value: 89.261
          - type: recall_at_1000
            value: 98.042
          - type: recall_at_3
            value: 50.807
          - type: recall_at_5
            value: 58.162000000000006
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackProgrammersRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 28.105000000000004
          - type: map_at_10
            value: 40.354
          - type: map_at_100
            value: 41.921
          - type: map_at_1000
            value: 42.021
          - type: map_at_3
            value: 36.532
          - type: map_at_5
            value: 38.671
          - type: mrr_at_1
            value: 34.475
          - type: mrr_at_10
            value: 45.342
          - type: mrr_at_100
            value: 46.300000000000004
          - type: mrr_at_1000
            value: 46.343
          - type: mrr_at_3
            value: 42.637
          - type: mrr_at_5
            value: 44.207
          - type: ndcg_at_1
            value: 34.475
          - type: ndcg_at_10
            value: 46.945
          - type: ndcg_at_100
            value: 52.939
          - type: ndcg_at_1000
            value: 54.645999999999994
          - type: ndcg_at_3
            value: 41.065000000000005
          - type: ndcg_at_5
            value: 43.832
          - type: precision_at_1
            value: 34.475
          - type: precision_at_10
            value: 8.892999999999999
          - type: precision_at_100
            value: 1.377
          - type: precision_at_1000
            value: 0.17099999999999999
          - type: precision_at_3
            value: 20.091
          - type: precision_at_5
            value: 14.452000000000002
          - type: recall_at_1
            value: 28.105000000000004
          - type: recall_at_10
            value: 61.253
          - type: recall_at_100
            value: 85.92
          - type: recall_at_1000
            value: 96.799
          - type: recall_at_3
            value: 45.094
          - type: recall_at_5
            value: 52.455
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 24.613833333333332
          - type: map_at_10
            value: 34.763
          - type: map_at_100
            value: 36.17066666666667
          - type: map_at_1000
            value: 36.2905
          - type: map_at_3
            value: 31.53541666666666
          - type: map_at_5
            value: 33.29216666666667
          - type: mrr_at_1
            value: 29.48725
          - type: mrr_at_10
            value: 38.92066666666667
          - type: mrr_at_100
            value: 39.88725000000001
          - type: mrr_at_1000
            value: 39.9435
          - type: mrr_at_3
            value: 36.284083333333335
          - type: mrr_at_5
            value: 37.73941666666667
          - type: ndcg_at_1
            value: 29.48725
          - type: ndcg_at_10
            value: 40.635083333333334
          - type: ndcg_at_100
            value: 46.479416666666665
          - type: ndcg_at_1000
            value: 48.63308333333334
          - type: ndcg_at_3
            value: 35.19483333333333
          - type: ndcg_at_5
            value: 37.68016666666667
          - type: precision_at_1
            value: 29.48725
          - type: precision_at_10
            value: 7.406499999999998
          - type: precision_at_100
            value: 1.2225833333333334
          - type: precision_at_1000
            value: 0.16108333333333336
          - type: precision_at_3
            value: 16.53375
          - type: precision_at_5
            value: 11.919416666666665
          - type: recall_at_1
            value: 24.613833333333332
          - type: recall_at_10
            value: 53.91766666666666
          - type: recall_at_100
            value: 79.18
          - type: recall_at_1000
            value: 93.85133333333333
          - type: recall_at_3
            value: 38.866166666666665
          - type: recall_at_5
            value: 45.21275000000001
          - type: map_at_1
            value: 12.328999999999999
          - type: map_at_10
            value: 20.078
          - type: map_at_100
            value: 21.166999999999998
          - type: map_at_1000
            value: 21.308
          - type: map_at_3
            value: 17.702
          - type: map_at_5
            value: 18.725
          - type: mrr_at_1
            value: 13.678
          - type: mrr_at_10
            value: 21.859
          - type: mrr_at_100
            value: 22.816
          - type: mrr_at_1000
            value: 22.926
          - type: mrr_at_3
            value: 19.378
          - type: mrr_at_5
            value: 20.385
          - type: ndcg_at_1
            value: 13.678
          - type: ndcg_at_10
            value: 24.993000000000002
          - type: ndcg_at_100
            value: 30.464999999999996
          - type: ndcg_at_1000
            value: 33.916000000000004
          - type: ndcg_at_3
            value: 19.966
          - type: ndcg_at_5
            value: 21.712999999999997
          - type: precision_at_1
            value: 13.678
          - type: precision_at_10
            value: 4.473
          - type: precision_at_100
            value: 0.784
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 9.181000000000001
          - type: precision_at_5
            value: 6.506
          - type: recall_at_1
            value: 12.328999999999999
          - type: recall_at_10
            value: 38.592
          - type: recall_at_100
            value: 63.817
          - type: recall_at_1000
            value: 89.67500000000001
          - type: recall_at_3
            value: 24.726
          - type: recall_at_5
            value: 28.959000000000003
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackStatsRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 25.106
          - type: map_at_10
            value: 33.367999999999995
          - type: map_at_100
            value: 34.586
          - type: map_at_1000
            value: 34.681
          - type: map_at_3
            value: 31.022
          - type: map_at_5
            value: 32.548
          - type: mrr_at_1
            value: 28.374
          - type: mrr_at_10
            value: 36.521
          - type: mrr_at_100
            value: 37.55
          - type: mrr_at_1000
            value: 37.614999999999995
          - type: mrr_at_3
            value: 34.509
          - type: mrr_at_5
            value: 35.836
          - type: ndcg_at_1
            value: 28.374
          - type: ndcg_at_10
            value: 37.893
          - type: ndcg_at_100
            value: 43.694
          - type: ndcg_at_1000
            value: 46.001999999999995
          - type: ndcg_at_3
            value: 33.825
          - type: ndcg_at_5
            value: 36.201
          - type: precision_at_1
            value: 28.374
          - type: precision_at_10
            value: 5.966
          - type: precision_at_100
            value: 0.9650000000000001
          - type: precision_at_1000
            value: 0.124
          - type: precision_at_3
            value: 14.774999999999999
          - type: precision_at_5
            value: 10.459999999999999
          - type: recall_at_1
            value: 25.106
          - type: recall_at_10
            value: 48.607
          - type: recall_at_100
            value: 74.66000000000001
          - type: recall_at_1000
            value: 91.562
          - type: recall_at_3
            value: 37.669999999999995
          - type: recall_at_5
            value: 43.484
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackTexRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 13.755
          - type: map_at_10
            value: 20.756
          - type: map_at_100
            value: 22.05
          - type: map_at_1000
            value: 22.201
          - type: map_at_3
            value: 18.243000000000002
          - type: map_at_5
            value: 19.512
          - type: mrr_at_1
            value: 16.93
          - type: mrr_at_10
            value: 24.276
          - type: mrr_at_100
            value: 25.349
          - type: mrr_at_1000
            value: 25.441000000000003
          - type: mrr_at_3
            value: 21.897
          - type: mrr_at_5
            value: 23.134
          - type: ndcg_at_1
            value: 16.93
          - type: ndcg_at_10
            value: 25.508999999999997
          - type: ndcg_at_100
            value: 31.777
          - type: ndcg_at_1000
            value: 35.112
          - type: ndcg_at_3
            value: 20.896
          - type: ndcg_at_5
            value: 22.857
          - type: precision_at_1
            value: 16.93
          - type: precision_at_10
            value: 4.972
          - type: precision_at_100
            value: 0.963
          - type: precision_at_1000
            value: 0.145
          - type: precision_at_3
            value: 10.14
          - type: precision_at_5
            value: 7.536
          - type: recall_at_1
            value: 13.755
          - type: recall_at_10
            value: 36.46
          - type: recall_at_100
            value: 64.786
          - type: recall_at_1000
            value: 88.287
          - type: recall_at_3
            value: 23.681
          - type: recall_at_5
            value: 28.615000000000002
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackUnixRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 26.99
          - type: map_at_10
            value: 38.009
          - type: map_at_100
            value: 39.384
          - type: map_at_1000
            value: 39.481
          - type: map_at_3
            value: 34.593
          - type: map_at_5
            value: 36.449999999999996
          - type: mrr_at_1
            value: 31.81
          - type: mrr_at_10
            value: 41.943000000000005
          - type: mrr_at_100
            value: 42.914
          - type: mrr_at_1000
            value: 42.962
          - type: mrr_at_3
            value: 39.179
          - type: mrr_at_5
            value: 40.798
          - type: ndcg_at_1
            value: 31.81
          - type: ndcg_at_10
            value: 44.086
          - type: ndcg_at_100
            value: 50.026
          - type: ndcg_at_1000
            value: 51.903999999999996
          - type: ndcg_at_3
            value: 38.23
          - type: ndcg_at_5
            value: 40.926
          - type: precision_at_1
            value: 31.81
          - type: precision_at_10
            value: 7.761
          - type: precision_at_100
            value: 1.205
          - type: precision_at_1000
            value: 0.148
          - type: precision_at_3
            value: 17.537
          - type: precision_at_5
            value: 12.649
          - type: recall_at_1
            value: 26.99
          - type: recall_at_10
            value: 58.467
          - type: recall_at_100
            value: 83.93
          - type: recall_at_1000
            value: 96.452
          - type: recall_at_3
            value: 42.685
          - type: recall_at_5
            value: 49.341
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackWebmastersRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 25.312
          - type: map_at_10
            value: 35.788
          - type: map_at_100
            value: 37.616
          - type: map_at_1000
            value: 37.86
          - type: map_at_3
            value: 32.422000000000004
          - type: map_at_5
            value: 34.585
          - type: mrr_at_1
            value: 30.631999999999998
          - type: mrr_at_10
            value: 40.604
          - type: mrr_at_100
            value: 41.745
          - type: mrr_at_1000
            value: 41.788
          - type: mrr_at_3
            value: 37.582
          - type: mrr_at_5
            value: 39.499
          - type: ndcg_at_1
            value: 30.631999999999998
          - type: ndcg_at_10
            value: 42.129
          - type: ndcg_at_100
            value: 48.943
          - type: ndcg_at_1000
            value: 51.089
          - type: ndcg_at_3
            value: 36.658
          - type: ndcg_at_5
            value: 39.818999999999996
          - type: precision_at_1
            value: 30.631999999999998
          - type: precision_at_10
            value: 7.904999999999999
          - type: precision_at_100
            value: 1.664
          - type: precision_at_1000
            value: 0.256
          - type: precision_at_3
            value: 16.996
          - type: precision_at_5
            value: 12.727
          - type: recall_at_1
            value: 25.312
          - type: recall_at_10
            value: 54.886
          - type: recall_at_100
            value: 84.155
          - type: recall_at_1000
            value: 96.956
          - type: recall_at_3
            value: 40.232
          - type: recall_at_5
            value: 48.204
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: mteb/climate-fever
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 19.147
          - type: map_at_10
            value: 33.509
          - type: map_at_100
            value: 35.573
          - type: map_at_1000
            value: 35.769
          - type: map_at_3
            value: 27.983999999999998
          - type: map_at_5
            value: 31.012
          - type: mrr_at_1
            value: 43.844
          - type: mrr_at_10
            value: 56.24
          - type: mrr_at_100
            value: 56.801
          - type: mrr_at_1000
            value: 56.826
          - type: mrr_at_3
            value: 53.290000000000006
          - type: mrr_at_5
            value: 55.13
          - type: ndcg_at_1
            value: 43.844
          - type: ndcg_at_10
            value: 43.996
          - type: ndcg_at_100
            value: 50.965
          - type: ndcg_at_1000
            value: 53.927
          - type: ndcg_at_3
            value: 37.263000000000005
          - type: ndcg_at_5
            value: 39.553
          - type: precision_at_1
            value: 43.844
          - type: precision_at_10
            value: 13.687
          - type: precision_at_100
            value: 2.139
          - type: precision_at_1000
            value: 0.269
          - type: precision_at_3
            value: 28.122000000000003
          - type: precision_at_5
            value: 21.303
          - type: recall_at_1
            value: 19.147
          - type: recall_at_10
            value: 50.449999999999996
          - type: recall_at_100
            value: 74.00099999999999
          - type: recall_at_1000
            value: 90.098
          - type: recall_at_3
            value: 33.343
          - type: recall_at_5
            value: 40.744
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: mteb/dbpedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 8.773
          - type: map_at_10
            value: 21.172
          - type: map_at_100
            value: 30.244
          - type: map_at_1000
            value: 32.127
          - type: map_at_3
            value: 14.510000000000002
          - type: map_at_5
            value: 17.483
          - type: mrr_at_1
            value: 68.25
          - type: mrr_at_10
            value: 77.33
          - type: mrr_at_100
            value: 77.529
          - type: mrr_at_1000
            value: 77.536
          - type: mrr_at_3
            value: 75.708
          - type: mrr_at_5
            value: 76.72099999999999
          - type: ndcg_at_1
            value: 60
          - type: ndcg_at_10
            value: 48.045
          - type: ndcg_at_100
            value: 51.620999999999995
          - type: ndcg_at_1000
            value: 58.843999999999994
          - type: ndcg_at_3
            value: 52.922000000000004
          - type: ndcg_at_5
            value: 50.27
          - type: precision_at_1
            value: 68.25
          - type: precision_at_10
            value: 37.625
          - type: precision_at_100
            value: 11.774999999999999
          - type: precision_at_1000
            value: 2.395
          - type: precision_at_3
            value: 55.25
          - type: precision_at_5
            value: 47.599999999999994
          - type: recall_at_1
            value: 8.773
          - type: recall_at_10
            value: 27.332
          - type: recall_at_100
            value: 55.48499999999999
          - type: recall_at_1000
            value: 79.886
          - type: recall_at_3
            value: 15.823
          - type: recall_at_5
            value: 20.523
      - task:
          type: Classification
        dataset:
          name: MTEB EmotionClassification
          type: mteb/emotion
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 54.52999999999999
          - type: f1
            value: 47.396628088963645
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: mteb/fever
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 85.397
          - type: map_at_10
            value: 90.917
          - type: map_at_100
            value: 91.109
          - type: map_at_1000
            value: 91.121
          - type: map_at_3
            value: 90.045
          - type: map_at_5
            value: 90.602
          - type: mrr_at_1
            value: 92.00399999999999
          - type: mrr_at_10
            value: 95.39999999999999
          - type: mrr_at_100
            value: 95.41
          - type: mrr_at_1000
            value: 95.41
          - type: mrr_at_3
            value: 95.165
          - type: mrr_at_5
            value: 95.348
          - type: ndcg_at_1
            value: 92.00399999999999
          - type: ndcg_at_10
            value: 93.345
          - type: ndcg_at_100
            value: 93.934
          - type: ndcg_at_1000
            value: 94.108
          - type: ndcg_at_3
            value: 92.32000000000001
          - type: ndcg_at_5
            value: 92.899
          - type: precision_at_1
            value: 92.00399999999999
          - type: precision_at_10
            value: 10.839
          - type: precision_at_100
            value: 1.1440000000000001
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 34.298
          - type: precision_at_5
            value: 21.128
          - type: recall_at_1
            value: 85.397
          - type: recall_at_10
            value: 96.375
          - type: recall_at_100
            value: 98.518
          - type: recall_at_1000
            value: 99.515
          - type: recall_at_3
            value: 93.59100000000001
          - type: recall_at_5
            value: 95.134
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: mteb/fiqa
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 27.36
          - type: map_at_10
            value: 46.847
          - type: map_at_100
            value: 49.259
          - type: map_at_1000
            value: 49.389
          - type: map_at_3
            value: 41.095
          - type: map_at_5
            value: 44.084
          - type: mrr_at_1
            value: 51.852
          - type: mrr_at_10
            value: 61.67
          - type: mrr_at_100
            value: 62.395999999999994
          - type: mrr_at_1000
            value: 62.414
          - type: mrr_at_3
            value: 59.465
          - type: mrr_at_5
            value: 60.584
          - type: ndcg_at_1
            value: 51.852
          - type: ndcg_at_10
            value: 55.311
          - type: ndcg_at_100
            value: 62.6
          - type: ndcg_at_1000
            value: 64.206
          - type: ndcg_at_3
            value: 51.159
          - type: ndcg_at_5
            value: 52.038
          - type: precision_at_1
            value: 51.852
          - type: precision_at_10
            value: 15.370000000000001
          - type: precision_at_100
            value: 2.282
          - type: precision_at_1000
            value: 0.258
          - type: precision_at_3
            value: 34.721999999999994
          - type: precision_at_5
            value: 24.846
          - type: recall_at_1
            value: 27.36
          - type: recall_at_10
            value: 63.932
          - type: recall_at_100
            value: 89.824
          - type: recall_at_1000
            value: 98.556
          - type: recall_at_3
            value: 47.227999999999994
          - type: recall_at_5
            value: 53.724000000000004
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: mteb/hotpotqa
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 40.655
          - type: map_at_10
            value: 63.824999999999996
          - type: map_at_100
            value: 64.793
          - type: map_at_1000
            value: 64.848
          - type: map_at_3
            value: 60.221000000000004
          - type: map_at_5
            value: 62.474
          - type: mrr_at_1
            value: 81.31
          - type: mrr_at_10
            value: 86.509
          - type: mrr_at_100
            value: 86.677
          - type: mrr_at_1000
            value: 86.682
          - type: mrr_at_3
            value: 85.717
          - type: mrr_at_5
            value: 86.21
          - type: ndcg_at_1
            value: 81.31
          - type: ndcg_at_10
            value: 72.251
          - type: ndcg_at_100
            value: 75.536
          - type: ndcg_at_1000
            value: 76.558
          - type: ndcg_at_3
            value: 67.291
          - type: ndcg_at_5
            value: 70.045
          - type: precision_at_1
            value: 81.31
          - type: precision_at_10
            value: 15.082999999999998
          - type: precision_at_100
            value: 1.764
          - type: precision_at_1000
            value: 0.19
          - type: precision_at_3
            value: 42.971
          - type: precision_at_5
            value: 27.956999999999997
          - type: recall_at_1
            value: 40.655
          - type: recall_at_10
            value: 75.41499999999999
          - type: recall_at_100
            value: 88.224
          - type: recall_at_1000
            value: 94.943
          - type: recall_at_3
            value: 64.456
          - type: recall_at_5
            value: 69.892
      - task:
          type: Classification
        dataset:
          name: MTEB ImdbClassification
          type: mteb/imdb
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 95.58120000000001
          - type: ap
            value: 93.0407063004784
          - type: f1
            value: 95.57849992996822
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: mteb/msmarco
          config: default
          split: dev
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 22.031
          - type: map_at_10
            value: 34.628
          - type: map_at_100
            value: 35.833
          - type: map_at_1000
            value: 35.881
          - type: map_at_3
            value: 30.619000000000003
          - type: map_at_5
            value: 32.982
          - type: mrr_at_1
            value: 22.736
          - type: mrr_at_10
            value: 35.24
          - type: mrr_at_100
            value: 36.381
          - type: mrr_at_1000
            value: 36.424
          - type: mrr_at_3
            value: 31.287
          - type: mrr_at_5
            value: 33.617000000000004
          - type: ndcg_at_1
            value: 22.736
          - type: ndcg_at_10
            value: 41.681000000000004
          - type: ndcg_at_100
            value: 47.371
          - type: ndcg_at_1000
            value: 48.555
          - type: ndcg_at_3
            value: 33.553
          - type: ndcg_at_5
            value: 37.771
          - type: precision_at_1
            value: 22.736
          - type: precision_at_10
            value: 6.625
          - type: precision_at_100
            value: 0.9450000000000001
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 14.331
          - type: precision_at_5
            value: 10.734
          - type: recall_at_1
            value: 22.031
          - type: recall_at_10
            value: 63.378
          - type: recall_at_100
            value: 89.47699999999999
          - type: recall_at_1000
            value: 98.48400000000001
          - type: recall_at_3
            value: 41.388000000000005
          - type: recall_at_5
            value: 51.522999999999996
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (en)
          type: mteb/mtop_domain
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 95.75239398084815
          - type: f1
            value: 95.51228043205194
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (en)
          type: mteb/mtop_intent
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 84.25900592795259
          - type: f1
            value: 62.14790420114562
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (en)
          type: mteb/amazon_massive_intent
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 78.47007397444519
          - type: f1
            value: 76.92133583932912
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (en)
          type: mteb/amazon_massive_scenario
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 78.19098856758575
          - type: f1
            value: 78.10820805879119
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringP2P
          type: mteb/medrxiv-clustering-p2p
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 44.37013684222983
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringS2S
          type: mteb/medrxiv-clustering-s2s
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 42.003012591979704
      - task:
          type: Reranking
        dataset:
          name: MTEB MindSmallReranking
          type: mteb/mind_small
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 32.70743071063257
          - type: mrr
            value: 33.938337390083994
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: mteb/nfcorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 6.369
          - type: map_at_10
            value: 14.313
          - type: map_at_100
            value: 18.329
          - type: map_at_1000
            value: 20.017
          - type: map_at_3
            value: 10.257
          - type: map_at_5
            value: 12.264999999999999
          - type: mrr_at_1
            value: 49.536
          - type: mrr_at_10
            value: 58.464000000000006
          - type: mrr_at_100
            value: 59.016000000000005
          - type: mrr_at_1000
            value: 59.053
          - type: mrr_at_3
            value: 56.294999999999995
          - type: mrr_at_5
            value: 57.766
          - type: ndcg_at_1
            value: 47.678
          - type: ndcg_at_10
            value: 38.246
          - type: ndcg_at_100
            value: 35.370000000000005
          - type: ndcg_at_1000
            value: 44.517
          - type: ndcg_at_3
            value: 43.368
          - type: ndcg_at_5
            value: 41.892
          - type: precision_at_1
            value: 49.536
          - type: precision_at_10
            value: 28.235
          - type: precision_at_100
            value: 9.014999999999999
          - type: precision_at_1000
            value: 2.257
          - type: precision_at_3
            value: 40.557
          - type: precision_at_5
            value: 36.409000000000006
          - type: recall_at_1
            value: 6.369
          - type: recall_at_10
            value: 19.195999999999998
          - type: recall_at_100
            value: 37.042
          - type: recall_at_1000
            value: 69.203
          - type: recall_at_3
            value: 11.564
          - type: recall_at_5
            value: 15.264
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: mteb/nq
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 39.323
          - type: map_at_10
            value: 54.608999999999995
          - type: map_at_100
            value: 55.523
          - type: map_at_1000
            value: 55.544000000000004
          - type: map_at_3
            value: 50.580000000000005
          - type: map_at_5
            value: 53.064
          - type: mrr_at_1
            value: 44.263999999999996
          - type: mrr_at_10
            value: 57.416
          - type: mrr_at_100
            value: 58.037000000000006
          - type: mrr_at_1000
            value: 58.05200000000001
          - type: mrr_at_3
            value: 54.330999999999996
          - type: mrr_at_5
            value: 56.302
          - type: ndcg_at_1
            value: 44.263999999999996
          - type: ndcg_at_10
            value: 61.785999999999994
          - type: ndcg_at_100
            value: 65.40599999999999
          - type: ndcg_at_1000
            value: 65.859
          - type: ndcg_at_3
            value: 54.518
          - type: ndcg_at_5
            value: 58.53699999999999
          - type: precision_at_1
            value: 44.263999999999996
          - type: precision_at_10
            value: 9.652
          - type: precision_at_100
            value: 1.169
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 24.15
          - type: precision_at_5
            value: 16.848
          - type: recall_at_1
            value: 39.323
          - type: recall_at_10
            value: 80.663
          - type: recall_at_100
            value: 96.072
          - type: recall_at_1000
            value: 99.37700000000001
          - type: recall_at_3
            value: 62.23
          - type: recall_at_5
            value: 71.379
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: mteb/quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 72.02499999999999
          - type: map_at_10
            value: 86.14500000000001
          - type: map_at_100
            value: 86.764
          - type: map_at_1000
            value: 86.776
          - type: map_at_3
            value: 83.249
          - type: map_at_5
            value: 85.083
          - type: mrr_at_1
            value: 82.83
          - type: mrr_at_10
            value: 88.70599999999999
          - type: mrr_at_100
            value: 88.791
          - type: mrr_at_1000
            value: 88.791
          - type: mrr_at_3
            value: 87.815
          - type: mrr_at_5
            value: 88.435
          - type: ndcg_at_1
            value: 82.84
          - type: ndcg_at_10
            value: 89.61200000000001
          - type: ndcg_at_100
            value: 90.693
          - type: ndcg_at_1000
            value: 90.752
          - type: ndcg_at_3
            value: 86.96199999999999
          - type: ndcg_at_5
            value: 88.454
          - type: precision_at_1
            value: 82.84
          - type: precision_at_10
            value: 13.600000000000001
          - type: precision_at_100
            value: 1.543
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 38.092999999999996
          - type: precision_at_5
            value: 25.024
          - type: recall_at_1
            value: 72.02499999999999
          - type: recall_at_10
            value: 96.21600000000001
          - type: recall_at_100
            value: 99.76
          - type: recall_at_1000
            value: 99.996
          - type: recall_at_3
            value: 88.57000000000001
          - type: recall_at_5
            value: 92.814
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClustering
          type: mteb/reddit-clustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 73.37297191949929
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClusteringP2P
          type: mteb/reddit-clustering-p2p
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 72.50752304246946
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: mteb/scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.4479999999999995
          - type: map_at_10
            value: 17.268
          - type: map_at_100
            value: 20.502000000000002
          - type: map_at_1000
            value: 20.904
          - type: map_at_3
            value: 11.951
          - type: map_at_5
            value: 14.494000000000002
          - type: mrr_at_1
            value: 31.900000000000002
          - type: mrr_at_10
            value: 45.084999999999994
          - type: mrr_at_100
            value: 46.145
          - type: mrr_at_1000
            value: 46.164
          - type: mrr_at_3
            value: 41.6
          - type: mrr_at_5
            value: 43.76
          - type: ndcg_at_1
            value: 31.900000000000002
          - type: ndcg_at_10
            value: 27.694000000000003
          - type: ndcg_at_100
            value: 39.016
          - type: ndcg_at_1000
            value: 44.448
          - type: ndcg_at_3
            value: 26.279999999999998
          - type: ndcg_at_5
            value: 22.93
          - type: precision_at_1
            value: 31.900000000000002
          - type: precision_at_10
            value: 14.399999999999999
          - type: precision_at_100
            value: 3.082
          - type: precision_at_1000
            value: 0.436
          - type: precision_at_3
            value: 24.667
          - type: precision_at_5
            value: 20.200000000000003
          - type: recall_at_1
            value: 6.4479999999999995
          - type: recall_at_10
            value: 29.243000000000002
          - type: recall_at_100
            value: 62.547
          - type: recall_at_1000
            value: 88.40299999999999
          - type: recall_at_3
            value: 14.988000000000001
          - type: recall_at_5
            value: 20.485
      - task:
          type: STS
        dataset:
          name: MTEB SICK-R
          type: mteb/sickr-sts
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 80.37839336866843
          - type: cos_sim_spearman
            value: 79.14737320486729
          - type: euclidean_pearson
            value: 78.74010870392799
          - type: euclidean_spearman
            value: 79.1472505448557
          - type: manhattan_pearson
            value: 78.76735626972086
          - type: manhattan_spearman
            value: 79.18509055331465
      - task:
          type: STS
        dataset:
          name: MTEB STS12
          type: mteb/sts12-sts
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 84.98947740740309
          - type: cos_sim_spearman
            value: 76.52068694652895
          - type: euclidean_pearson
            value: 81.10952542010847
          - type: euclidean_spearman
            value: 76.52162808897668
          - type: manhattan_pearson
            value: 81.13752577872523
          - type: manhattan_spearman
            value: 76.55073892851847
          - type: cos_sim_pearson
            value: 84.99292517797305
          - type: cos_sim_spearman
            value: 76.52287451692155
          - type: euclidean_pearson
            value: 81.11616055544546
          - type: euclidean_spearman
            value: 76.525387473028
          - type: manhattan_pearson
            value: 81.14367598670032
          - type: manhattan_spearman
            value: 76.55571799438607
      - task:
          type: STS
        dataset:
          name: MTEB STS13
          type: mteb/sts13-sts
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 88.14795728641734
          - type: cos_sim_spearman
            value: 88.62720469210905
          - type: euclidean_pearson
            value: 87.96160445129142
          - type: euclidean_spearman
            value: 88.62615925428736
          - type: manhattan_pearson
            value: 87.86760858379527
          - type: manhattan_spearman
            value: 88.5613166629411
      - task:
          type: STS
        dataset:
          name: MTEB STS14
          type: mteb/sts14-sts
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 85.06444249948838
          - type: cos_sim_spearman
            value: 83.32346434965837
          - type: euclidean_pearson
            value: 83.86264166785146
          - type: euclidean_spearman
            value: 83.32323156068114
          - type: manhattan_pearson
            value: 83.87253909108084
          - type: manhattan_spearman
            value: 83.42760090819642
      - task:
          type: STS
        dataset:
          name: MTEB STS15
          type: mteb/sts15-sts
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 87.00847937091636
          - type: cos_sim_spearman
            value: 87.50432670473445
          - type: euclidean_pearson
            value: 87.21611485565168
          - type: euclidean_spearman
            value: 87.50387351928698
          - type: manhattan_pearson
            value: 87.30690660623411
          - type: manhattan_spearman
            value: 87.61147161393255
      - task:
          type: STS
        dataset:
          name: MTEB STS16
          type: mteb/sts16-sts
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.51456553517488
          - type: cos_sim_spearman
            value: 86.39208323626035
          - type: euclidean_pearson
            value: 85.74698473006475
          - type: euclidean_spearman
            value: 86.3892506146807
          - type: manhattan_pearson
            value: 85.77493611949014
          - type: manhattan_spearman
            value: 86.42961510735024
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-en)
          type: mteb/sts17-crosslingual-sts
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.63402051628222
          - type: cos_sim_spearman
            value: 87.78994504115502
          - type: euclidean_pearson
            value: 88.44861926968403
          - type: euclidean_spearman
            value: 87.80670473078185
          - type: manhattan_pearson
            value: 88.4773722010208
          - type: manhattan_spearman
            value: 87.85175600656768
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (en)
          type: mteb/sts22-crosslingual-sts
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 65.9659729672951
          - type: cos_sim_spearman
            value: 66.39891735341361
          - type: euclidean_pearson
            value: 68.040150710449
          - type: euclidean_spearman
            value: 66.41777234484414
          - type: manhattan_pearson
            value: 68.16264809387305
          - type: manhattan_spearman
            value: 66.31608161700346
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmark
          type: mteb/stsbenchmark-sts
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 86.91024857159385
          - type: cos_sim_spearman
            value: 87.35031011815016
          - type: euclidean_pearson
            value: 86.94569462996033
          - type: euclidean_spearman
            value: 87.34929703462852
          - type: manhattan_pearson
            value: 86.94404111225616
          - type: manhattan_spearman
            value: 87.37827218003393
      - task:
          type: Reranking
        dataset:
          name: MTEB SciDocsRR
          type: mteb/scidocs-reranking
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 87.89077927002596
          - type: mrr
            value: 96.94650937297997
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: mteb/scifact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 57.994
          - type: map_at_10
            value: 70.07100000000001
          - type: map_at_100
            value: 70.578
          - type: map_at_1000
            value: 70.588
          - type: map_at_3
            value: 67.228
          - type: map_at_5
            value: 68.695
          - type: mrr_at_1
            value: 61.333000000000006
          - type: mrr_at_10
            value: 71.342
          - type: mrr_at_100
            value: 71.739
          - type: mrr_at_1000
            value: 71.75
          - type: mrr_at_3
            value: 69.389
          - type: mrr_at_5
            value: 70.322
          - type: ndcg_at_1
            value: 61.333000000000006
          - type: ndcg_at_10
            value: 75.312
          - type: ndcg_at_100
            value: 77.312
          - type: ndcg_at_1000
            value: 77.50200000000001
          - type: ndcg_at_3
            value: 70.72
          - type: ndcg_at_5
            value: 72.616
          - type: precision_at_1
            value: 61.333000000000006
          - type: precision_at_10
            value: 10.167
          - type: precision_at_100
            value: 1.117
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 28.111000000000004
          - type: precision_at_5
            value: 18.333
          - type: recall_at_1
            value: 57.994
          - type: recall_at_10
            value: 89.944
          - type: recall_at_100
            value: 98.667
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 77.694
          - type: recall_at_5
            value: 82.339
      - task:
          type: PairClassification
        dataset:
          name: MTEB SprintDuplicateQuestions
          type: mteb/sprintduplicatequestions-pairclassification
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.81485148514851
          - type: cos_sim_ap
            value: 95.99339654021689
          - type: cos_sim_f1
            value: 90.45971329708354
          - type: cos_sim_precision
            value: 89.44281524926686
          - type: cos_sim_recall
            value: 91.5
          - type: dot_accuracy
            value: 99.81485148514851
          - type: dot_ap
            value: 95.990792367539
          - type: dot_f1
            value: 90.54187192118228
          - type: dot_precision
            value: 89.2233009708738
          - type: dot_recall
            value: 91.9
          - type: euclidean_accuracy
            value: 99.81386138613861
          - type: euclidean_ap
            value: 95.99403827746491
          - type: euclidean_f1
            value: 90.45971329708354
          - type: euclidean_precision
            value: 89.44281524926686
          - type: euclidean_recall
            value: 91.5
          - type: manhattan_accuracy
            value: 99.81485148514851
          - type: manhattan_ap
            value: 96.06741547889861
          - type: manhattan_f1
            value: 90.55666003976144
          - type: manhattan_precision
            value: 90.01976284584981
          - type: manhattan_recall
            value: 91.10000000000001
          - type: max_accuracy
            value: 99.81485148514851
          - type: max_ap
            value: 96.06741547889861
          - type: max_f1
            value: 90.55666003976144
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClustering
          type: mteb/stackexchange-clustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 79.0667992003181
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClusteringP2P
          type: mteb/stackexchange-clustering-p2p
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 49.57086425048946
      - task:
          type: Reranking
        dataset:
          name: MTEB StackOverflowDupQuestions
          type: mteb/stackoverflowdupquestions-reranking
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 53.929415255105894
          - type: mrr
            value: 54.93889790764791
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEval
          type: mteb/summeval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.050700527286658
          - type: cos_sim_spearman
            value: 31.46077656458546
          - type: dot_pearson
            value: 31.056448416258263
          - type: dot_spearman
            value: 31.435272601921042
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: mteb/trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.23500000000000001
          - type: map_at_10
            value: 1.812
          - type: map_at_100
            value: 10.041
          - type: map_at_1000
            value: 24.095
          - type: map_at_3
            value: 0.643
          - type: map_at_5
            value: 1
          - type: mrr_at_1
            value: 86
          - type: mrr_at_10
            value: 92
          - type: mrr_at_100
            value: 92
          - type: mrr_at_1000
            value: 92
          - type: mrr_at_3
            value: 91.667
          - type: mrr_at_5
            value: 91.667
          - type: ndcg_at_1
            value: 79
          - type: ndcg_at_10
            value: 72.72
          - type: ndcg_at_100
            value: 55.82899999999999
          - type: ndcg_at_1000
            value: 50.72
          - type: ndcg_at_3
            value: 77.715
          - type: ndcg_at_5
            value: 75.036
          - type: precision_at_1
            value: 86
          - type: precision_at_10
            value: 77.60000000000001
          - type: precision_at_100
            value: 56.46
          - type: precision_at_1000
            value: 22.23
          - type: precision_at_3
            value: 82.667
          - type: precision_at_5
            value: 80.4
          - type: recall_at_1
            value: 0.23500000000000001
          - type: recall_at_10
            value: 2.046
          - type: recall_at_100
            value: 13.708
          - type: recall_at_1000
            value: 47.451
          - type: recall_at_3
            value: 0.6709999999999999
          - type: recall_at_5
            value: 1.078
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: mteb/touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 2.252
          - type: map_at_10
            value: 7.958
          - type: map_at_100
            value: 12.293
          - type: map_at_1000
            value: 13.832
          - type: map_at_3
            value: 4.299
          - type: map_at_5
            value: 5.514
          - type: mrr_at_1
            value: 30.612000000000002
          - type: mrr_at_10
            value: 42.329
          - type: mrr_at_100
            value: 43.506
          - type: mrr_at_1000
            value: 43.506
          - type: mrr_at_3
            value: 38.775999999999996
          - type: mrr_at_5
            value: 39.592
          - type: ndcg_at_1
            value: 28.571
          - type: ndcg_at_10
            value: 20.301
          - type: ndcg_at_100
            value: 30.703999999999997
          - type: ndcg_at_1000
            value: 43.155
          - type: ndcg_at_3
            value: 22.738
          - type: ndcg_at_5
            value: 20.515
          - type: precision_at_1
            value: 30.612000000000002
          - type: precision_at_10
            value: 17.347
          - type: precision_at_100
            value: 6.327000000000001
          - type: precision_at_1000
            value: 1.443
          - type: precision_at_3
            value: 22.448999999999998
          - type: precision_at_5
            value: 19.184
          - type: recall_at_1
            value: 2.252
          - type: recall_at_10
            value: 13.206999999999999
          - type: recall_at_100
            value: 40.372
          - type: recall_at_1000
            value: 78.071
          - type: recall_at_3
            value: 5.189
          - type: recall_at_5
            value: 7.338
      - task:
          type: Classification
        dataset:
          name: MTEB ToxicConversationsClassification
          type: mteb/toxic_conversations_50k
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 78.75399999999999
          - type: ap
            value: 19.666483622175363
          - type: f1
            value: 61.575187470329176
      - task:
          type: Classification
        dataset:
          name: MTEB TweetSentimentExtractionClassification
          type: mteb/tweet_sentiment_extraction
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 66.00452744765137
          - type: f1
            value: 66.18291586829227
      - task:
          type: Clustering
        dataset:
          name: MTEB TwentyNewsgroupsClustering
          type: mteb/twentynewsgroups-clustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 51.308747717084316
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterSemEval2015
          type: mteb/twittersemeval2015-pairclassification
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.81069321094355
          - type: cos_sim_ap
            value: 79.3576921453847
          - type: cos_sim_f1
            value: 71.75811286328685
          - type: cos_sim_precision
            value: 70.89878959567345
          - type: cos_sim_recall
            value: 72.63852242744063
          - type: dot_accuracy
            value: 87.79877212850927
          - type: dot_ap
            value: 79.35550320857683
          - type: dot_f1
            value: 71.78153446033811
          - type: dot_precision
            value: 70.76923076923077
          - type: dot_recall
            value: 72.82321899736148
          - type: euclidean_accuracy
            value: 87.80473266972642
          - type: euclidean_ap
            value: 79.35792655436586
          - type: euclidean_f1
            value: 71.75672148264161
          - type: euclidean_precision
            value: 70.99690082644628
          - type: euclidean_recall
            value: 72.53298153034301
          - type: manhattan_accuracy
            value: 87.76300888120642
          - type: manhattan_ap
            value: 79.33615959143606
          - type: manhattan_f1
            value: 71.73219978746015
          - type: manhattan_precision
            value: 72.23113964686998
          - type: manhattan_recall
            value: 71.2401055408971
          - type: max_accuracy
            value: 87.81069321094355
          - type: max_ap
            value: 79.35792655436586
          - type: max_f1
            value: 71.78153446033811
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterURLCorpus
          type: mteb/twitterurlcorpus-pairclassification
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.3778864439011
          - type: cos_sim_ap
            value: 86.79005637312795
          - type: cos_sim_f1
            value: 79.14617791685293
          - type: cos_sim_precision
            value: 76.66714780600462
          - type: cos_sim_recall
            value: 81.79088389282414
          - type: dot_accuracy
            value: 89.37206504443668
          - type: dot_ap
            value: 86.78770290102123
          - type: dot_f1
            value: 79.14741392159786
          - type: dot_precision
            value: 76.6897746967071
          - type: dot_recall
            value: 81.76778564829073
          - type: euclidean_accuracy
            value: 89.37594597741297
          - type: euclidean_ap
            value: 86.7900899669397
          - type: euclidean_f1
            value: 79.13920845898953
          - type: euclidean_precision
            value: 76.62028692956528
          - type: euclidean_recall
            value: 81.8293809670465
          - type: manhattan_accuracy
            value: 89.38758877634183
          - type: manhattan_ap
            value: 86.78862564973224
          - type: manhattan_f1
            value: 79.1130985653065
          - type: manhattan_precision
            value: 76.6592041597458
          - type: manhattan_recall
            value: 81.72928857406838
          - type: max_accuracy
            value: 89.38758877634183
          - type: max_ap
            value: 86.7900899669397
          - type: max_f1
            value: 79.14741392159786
      - task:
          type: STS
        dataset:
          name: MTEB AFQMC
          type: C-MTEB/AFQMC
          config: default
          split: validation
          revision: b44c3b011063adb25877c13823db83bb193913c4
        metrics:
          - type: cos_sim_pearson
            value: 50.01571015887356
          - type: cos_sim_spearman
            value: 58.47419994907958
          - type: euclidean_pearson
            value: 55.63582004345212
          - type: euclidean_spearman
            value: 58.47514484211099
          - type: manhattan_pearson
            value: 55.58487268871911
          - type: manhattan_spearman
            value: 58.411916843600075
      - task:
          type: STS
        dataset:
          name: MTEB ATEC
          type: C-MTEB/ATEC
          config: default
          split: test
          revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
        metrics:
          - type: cos_sim_pearson
            value: 44.99231617937922
          - type: cos_sim_spearman
            value: 55.459227458516416
          - type: euclidean_pearson
            value: 52.98483376548224
          - type: euclidean_spearman
            value: 55.45938733128155
          - type: manhattan_pearson
            value: 52.946854805143964
          - type: manhattan_spearman
            value: 55.4272663113618
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (zh)
          type: mteb/amazon_reviews_multi
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 52.946000000000005
          - type: f1
            value: 49.299873931232725
      - task:
          type: STS
        dataset:
          name: MTEB BQ
          type: C-MTEB/BQ
          config: default
          split: test
          revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
        metrics:
          - type: cos_sim_pearson
            value: 74.66979530294986
          - type: cos_sim_spearman
            value: 77.59153258548018
          - type: euclidean_pearson
            value: 76.5862988380262
          - type: euclidean_spearman
            value: 77.59094368703879
          - type: manhattan_pearson
            value: 76.6034419552102
          - type: manhattan_spearman
            value: 77.6000715948404
      - task:
          type: Clustering
        dataset:
          name: MTEB CLSClusteringP2P
          type: C-MTEB/CLSClusteringP2P
          config: default
          split: test
          revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
        metrics:
          - type: v_measure
            value: 47.20931915009524
      - task:
          type: Clustering
        dataset:
          name: MTEB CLSClusteringS2S
          type: C-MTEB/CLSClusteringS2S
          config: default
          split: test
          revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
        metrics:
          - type: v_measure
            value: 45.787353610995474
      - task:
          type: Reranking
        dataset:
          name: MTEB CMedQAv1
          type: C-MTEB/CMedQAv1-reranking
          config: default
          split: test
          revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
        metrics:
          - type: map
            value: 86.37146026784607
          - type: mrr
            value: 88.52309523809524
      - task:
          type: Reranking
        dataset:
          name: MTEB CMedQAv2
          type: C-MTEB/CMedQAv2-reranking
          config: default
          split: test
          revision: 23d186750531a14a0357ca22cd92d712fd512ea0
        metrics:
          - type: map
            value: 87.40699302584699
          - type: mrr
            value: 89.51591269841269
      - task:
          type: Retrieval
        dataset:
          name: MTEB CmedqaRetrieval
          type: C-MTEB/CmedqaRetrieval
          config: default
          split: dev
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
        metrics:
          - type: map_at_1
            value: 24.465
          - type: map_at_10
            value: 36.689
          - type: map_at_100
            value: 38.605000000000004
          - type: map_at_1000
            value: 38.718
          - type: map_at_3
            value: 32.399
          - type: map_at_5
            value: 34.784
          - type: mrr_at_1
            value: 37.234
          - type: mrr_at_10
            value: 45.634
          - type: mrr_at_100
            value: 46.676
          - type: mrr_at_1000
            value: 46.717
          - type: mrr_at_3
            value: 42.94
          - type: mrr_at_5
            value: 44.457
          - type: ndcg_at_1
            value: 37.234
          - type: ndcg_at_10
            value: 43.469
          - type: ndcg_at_100
            value: 51.048
          - type: ndcg_at_1000
            value: 52.925999999999995
          - type: ndcg_at_3
            value: 37.942
          - type: ndcg_at_5
            value: 40.253
          - type: precision_at_1
            value: 37.234
          - type: precision_at_10
            value: 9.745
          - type: precision_at_100
            value: 1.5879999999999999
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 21.505
          - type: precision_at_5
            value: 15.729000000000001
          - type: recall_at_1
            value: 24.465
          - type: recall_at_10
            value: 54.559999999999995
          - type: recall_at_100
            value: 85.97200000000001
          - type: recall_at_1000
            value: 98.32499999999999
          - type: recall_at_3
            value: 38.047
          - type: recall_at_5
            value: 45.08
      - task:
          type: PairClassification
        dataset:
          name: MTEB Cmnli
          type: C-MTEB/CMNLI
          config: default
          split: validation
          revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
        metrics:
          - type: cos_sim_accuracy
            value: 84.50992182802165
          - type: cos_sim_ap
            value: 91.81488661281966
          - type: cos_sim_f1
            value: 85.46855802524294
          - type: cos_sim_precision
            value: 81.82207014542344
          - type: cos_sim_recall
            value: 89.4552256254384
          - type: dot_accuracy
            value: 84.50992182802165
          - type: dot_ap
            value: 91.80547588176556
          - type: dot_f1
            value: 85.46492111446794
          - type: dot_precision
            value: 81.95278969957081
          - type: dot_recall
            value: 89.29155950432546
          - type: euclidean_accuracy
            value: 84.49789536981359
          - type: euclidean_ap
            value: 91.81495039620808
          - type: euclidean_f1
            value: 85.46817317373308
          - type: euclidean_precision
            value: 81.93908193908193
          - type: euclidean_recall
            value: 89.31494037877017
          - type: manhattan_accuracy
            value: 84.46181599518941
          - type: manhattan_ap
            value: 91.85400573633447
          - type: manhattan_f1
            value: 85.54283809312146
          - type: manhattan_precision
            value: 81.51207115628971
          - type: manhattan_recall
            value: 89.99298573766659
          - type: max_accuracy
            value: 84.50992182802165
          - type: max_ap
            value: 91.85400573633447
          - type: max_f1
            value: 85.54283809312146
      - task:
          type: Retrieval
        dataset:
          name: MTEB CovidRetrieval
          type: C-MTEB/CovidRetrieval
          config: default
          split: dev
          revision: 1271c7809071a13532e05f25fb53511ffce77117
        metrics:
          - type: map_at_1
            value: 68.072
          - type: map_at_10
            value: 76.82900000000001
          - type: map_at_100
            value: 77.146
          - type: map_at_1000
            value: 77.14999999999999
          - type: map_at_3
            value: 74.939
          - type: map_at_5
            value: 76.009
          - type: mrr_at_1
            value: 68.282
          - type: mrr_at_10
            value: 76.818
          - type: mrr_at_100
            value: 77.13600000000001
          - type: mrr_at_1000
            value: 77.14
          - type: mrr_at_3
            value: 74.956
          - type: mrr_at_5
            value: 76.047
          - type: ndcg_at_1
            value: 68.282
          - type: ndcg_at_10
            value: 80.87299999999999
          - type: ndcg_at_100
            value: 82.191
          - type: ndcg_at_1000
            value: 82.286
          - type: ndcg_at_3
            value: 77.065
          - type: ndcg_at_5
            value: 78.965
          - type: precision_at_1
            value: 68.282
          - type: precision_at_10
            value: 9.452
          - type: precision_at_100
            value: 1.002
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 27.889000000000003
          - type: precision_at_5
            value: 17.682000000000002
          - type: recall_at_1
            value: 68.072
          - type: recall_at_10
            value: 93.467
          - type: recall_at_100
            value: 99.157
          - type: recall_at_1000
            value: 99.895
          - type: recall_at_3
            value: 83.14
          - type: recall_at_5
            value: 87.67099999999999
      - task:
          type: Retrieval
        dataset:
          name: MTEB DuRetrieval
          type: C-MTEB/DuRetrieval
          config: default
          split: dev
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
        metrics:
          - type: map_at_1
            value: 26.107999999999997
          - type: map_at_10
            value: 78.384
          - type: map_at_100
            value: 81.341
          - type: map_at_1000
            value: 81.384
          - type: map_at_3
            value: 54.462999999999994
          - type: map_at_5
            value: 68.607
          - type: mrr_at_1
            value: 88.94999999999999
          - type: mrr_at_10
            value: 92.31
          - type: mrr_at_100
            value: 92.379
          - type: mrr_at_1000
            value: 92.38300000000001
          - type: mrr_at_3
            value: 91.85799999999999
          - type: mrr_at_5
            value: 92.146
          - type: ndcg_at_1
            value: 88.94999999999999
          - type: ndcg_at_10
            value: 86.00999999999999
          - type: ndcg_at_100
            value: 89.121
          - type: ndcg_at_1000
            value: 89.534
          - type: ndcg_at_3
            value: 84.69200000000001
          - type: ndcg_at_5
            value: 83.678
          - type: precision_at_1
            value: 88.94999999999999
          - type: precision_at_10
            value: 41.065000000000005
          - type: precision_at_100
            value: 4.781
          - type: precision_at_1000
            value: 0.488
          - type: precision_at_3
            value: 75.75
          - type: precision_at_5
            value: 63.93
          - type: recall_at_1
            value: 26.107999999999997
          - type: recall_at_10
            value: 87.349
          - type: recall_at_100
            value: 97.14699999999999
          - type: recall_at_1000
            value: 99.287
          - type: recall_at_3
            value: 56.601
          - type: recall_at_5
            value: 73.381
      - task:
          type: Retrieval
        dataset:
          name: MTEB EcomRetrieval
          type: C-MTEB/EcomRetrieval
          config: default
          split: dev
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
        metrics:
          - type: map_at_1
            value: 50.7
          - type: map_at_10
            value: 61.312999999999995
          - type: map_at_100
            value: 61.88399999999999
          - type: map_at_1000
            value: 61.9
          - type: map_at_3
            value: 58.983
          - type: map_at_5
            value: 60.238
          - type: mrr_at_1
            value: 50.7
          - type: mrr_at_10
            value: 61.312999999999995
          - type: mrr_at_100
            value: 61.88399999999999
          - type: mrr_at_1000
            value: 61.9
          - type: mrr_at_3
            value: 58.983
          - type: mrr_at_5
            value: 60.238
          - type: ndcg_at_1
            value: 50.7
          - type: ndcg_at_10
            value: 66.458
          - type: ndcg_at_100
            value: 69.098
          - type: ndcg_at_1000
            value: 69.539
          - type: ndcg_at_3
            value: 61.637
          - type: ndcg_at_5
            value: 63.92099999999999
          - type: precision_at_1
            value: 50.7
          - type: precision_at_10
            value: 8.260000000000002
          - type: precision_at_100
            value: 0.946
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 23.1
          - type: precision_at_5
            value: 14.979999999999999
          - type: recall_at_1
            value: 50.7
          - type: recall_at_10
            value: 82.6
          - type: recall_at_100
            value: 94.6
          - type: recall_at_1000
            value: 98.1
          - type: recall_at_3
            value: 69.3
          - type: recall_at_5
            value: 74.9
      - task:
          type: Classification
        dataset:
          name: MTEB IFlyTek
          type: C-MTEB/IFlyTek-classification
          config: default
          split: validation
          revision: 421605374b29664c5fc098418fe20ada9bd55f8a
        metrics:
          - type: accuracy
            value: 53.76683339746056
          - type: f1
            value: 40.026100192683714
      - task:
          type: Classification
        dataset:
          name: MTEB JDReview
          type: C-MTEB/JDReview-classification
          config: default
          split: test
          revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
        metrics:
          - type: accuracy
            value: 88.19887429643526
          - type: ap
            value: 59.02998120976959
          - type: f1
            value: 83.3659125921227
      - task:
          type: STS
        dataset:
          name: MTEB LCQMC
          type: C-MTEB/LCQMC
          config: default
          split: test
          revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
        metrics:
          - type: cos_sim_pearson
            value: 72.53955204856854
          - type: cos_sim_spearman
            value: 76.28996886746215
          - type: euclidean_pearson
            value: 75.31184890026394
          - type: euclidean_spearman
            value: 76.28984471300522
          - type: manhattan_pearson
            value: 75.36930361638623
          - type: manhattan_spearman
            value: 76.34021995551348
      - task:
          type: Reranking
        dataset:
          name: MTEB MMarcoReranking
          type: C-MTEB/Mmarco-reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 23.63666512532725
          - type: mrr
            value: 22.49642857142857
      - task:
          type: Retrieval
        dataset:
          name: MTEB MMarcoRetrieval
          type: C-MTEB/MMarcoRetrieval
          config: default
          split: dev
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
        metrics:
          - type: map_at_1
            value: 60.645
          - type: map_at_10
            value: 69.733
          - type: map_at_100
            value: 70.11699999999999
          - type: map_at_1000
            value: 70.135
          - type: map_at_3
            value: 67.585
          - type: map_at_5
            value: 68.904
          - type: mrr_at_1
            value: 62.765
          - type: mrr_at_10
            value: 70.428
          - type: mrr_at_100
            value: 70.77
          - type: mrr_at_1000
            value: 70.785
          - type: mrr_at_3
            value: 68.498
          - type: mrr_at_5
            value: 69.69
          - type: ndcg_at_1
            value: 62.765
          - type: ndcg_at_10
            value: 73.83
          - type: ndcg_at_100
            value: 75.593
          - type: ndcg_at_1000
            value: 76.05199999999999
          - type: ndcg_at_3
            value: 69.66499999999999
          - type: ndcg_at_5
            value: 71.929
          - type: precision_at_1
            value: 62.765
          - type: precision_at_10
            value: 9.117
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 26.323
          - type: precision_at_5
            value: 16.971
          - type: recall_at_1
            value: 60.645
          - type: recall_at_10
            value: 85.907
          - type: recall_at_100
            value: 93.947
          - type: recall_at_1000
            value: 97.531
          - type: recall_at_3
            value: 74.773
          - type: recall_at_5
            value: 80.16799999999999
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-CN)
          type: mteb/amazon_massive_intent
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 76.25084061869536
          - type: f1
            value: 73.65064492827022
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-CN)
          type: mteb/amazon_massive_scenario
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 77.2595830531271
          - type: f1
            value: 77.15217273559321
      - task:
          type: Retrieval
        dataset:
          name: MTEB MedicalRetrieval
          type: C-MTEB/MedicalRetrieval
          config: default
          split: dev
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
        metrics:
          - type: map_at_1
            value: 52.400000000000006
          - type: map_at_10
            value: 58.367000000000004
          - type: map_at_100
            value: 58.913000000000004
          - type: map_at_1000
            value: 58.961
          - type: map_at_3
            value: 56.882999999999996
          - type: map_at_5
            value: 57.743
          - type: mrr_at_1
            value: 52.400000000000006
          - type: mrr_at_10
            value: 58.367000000000004
          - type: mrr_at_100
            value: 58.913000000000004
          - type: mrr_at_1000
            value: 58.961
          - type: mrr_at_3
            value: 56.882999999999996
          - type: mrr_at_5
            value: 57.743
          - type: ndcg_at_1
            value: 52.400000000000006
          - type: ndcg_at_10
            value: 61.329
          - type: ndcg_at_100
            value: 64.264
          - type: ndcg_at_1000
            value: 65.669
          - type: ndcg_at_3
            value: 58.256
          - type: ndcg_at_5
            value: 59.813
          - type: precision_at_1
            value: 52.400000000000006
          - type: precision_at_10
            value: 7.07
          - type: precision_at_100
            value: 0.851
          - type: precision_at_1000
            value: 0.096
          - type: precision_at_3
            value: 20.732999999999997
          - type: precision_at_5
            value: 13.200000000000001
          - type: recall_at_1
            value: 52.400000000000006
          - type: recall_at_10
            value: 70.7
          - type: recall_at_100
            value: 85.1
          - type: recall_at_1000
            value: 96.39999999999999
          - type: recall_at_3
            value: 62.2
          - type: recall_at_5
            value: 66
      - task:
          type: Classification
        dataset:
          name: MTEB MultilingualSentiment
          type: C-MTEB/MultilingualSentiment-classification
          config: default
          split: validation
          revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
        metrics:
          - type: accuracy
            value: 77.42333333333333
          - type: f1
            value: 77.24849313989888
      - task:
          type: PairClassification
        dataset:
          name: MTEB Ocnli
          type: C-MTEB/OCNLI
          config: default
          split: validation
          revision: 66e76a618a34d6d565d5538088562851e6daa7ec
        metrics:
          - type: cos_sim_accuracy
            value: 80.12994044396319
          - type: cos_sim_ap
            value: 85.21793541189636
          - type: cos_sim_f1
            value: 81.91489361702128
          - type: cos_sim_precision
            value: 75.55753791257806
          - type: cos_sim_recall
            value: 89.44033790918691
          - type: dot_accuracy
            value: 80.12994044396319
          - type: dot_ap
            value: 85.22568672443236
          - type: dot_f1
            value: 81.91489361702128
          - type: dot_precision
            value: 75.55753791257806
          - type: dot_recall
            value: 89.44033790918691
          - type: euclidean_accuracy
            value: 80.12994044396319
          - type: euclidean_ap
            value: 85.21643342357407
          - type: euclidean_f1
            value: 81.8830242510699
          - type: euclidean_precision
            value: 74.48096885813149
          - type: euclidean_recall
            value: 90.91869060190075
          - type: manhattan_accuracy
            value: 80.5630752571738
          - type: manhattan_ap
            value: 85.27682975032671
          - type: manhattan_f1
            value: 82.03883495145631
          - type: manhattan_precision
            value: 75.92093441150045
          - type: manhattan_recall
            value: 89.22914466737065
          - type: max_accuracy
            value: 80.5630752571738
          - type: max_ap
            value: 85.27682975032671
          - type: max_f1
            value: 82.03883495145631
      - task:
          type: Classification
        dataset:
          name: MTEB OnlineShopping
          type: C-MTEB/OnlineShopping-classification
          config: default
          split: test
          revision: e610f2ebd179a8fda30ae534c3878750a96db120
        metrics:
          - type: accuracy
            value: 94.47999999999999
          - type: ap
            value: 92.81177660844013
          - type: f1
            value: 94.47045470502114
      - task:
          type: STS
        dataset:
          name: MTEB PAWSX
          type: C-MTEB/PAWSX
          config: default
          split: test
          revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
        metrics:
          - type: cos_sim_pearson
            value: 46.13154582182421
          - type: cos_sim_spearman
            value: 50.21718723757444
          - type: euclidean_pearson
            value: 49.41535243569054
          - type: euclidean_spearman
            value: 50.21831909208907
          - type: manhattan_pearson
            value: 49.50756578601167
          - type: manhattan_spearman
            value: 50.229118655684566
      - task:
          type: STS
        dataset:
          name: MTEB QBQTC
          type: C-MTEB/QBQTC
          config: default
          split: test
          revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
        metrics:
          - type: cos_sim_pearson
            value: 30.787794367421956
          - type: cos_sim_spearman
            value: 31.81774306987836
          - type: euclidean_pearson
            value: 29.809436608089495
          - type: euclidean_spearman
            value: 31.817379098812165
          - type: manhattan_pearson
            value: 30.377027186607787
          - type: manhattan_spearman
            value: 32.42286865176827
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh)
          type: mteb/sts22-crosslingual-sts
          config: zh
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 61.29839896616376
          - type: cos_sim_spearman
            value: 67.36328213286453
          - type: euclidean_pearson
            value: 64.33899267794008
          - type: euclidean_spearman
            value: 67.36552580196211
          - type: manhattan_pearson
            value: 65.20010308796022
          - type: manhattan_spearman
            value: 67.50982972902
      - task:
          type: STS
        dataset:
          name: MTEB STSB
          type: C-MTEB/STSB
          config: default
          split: test
          revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
        metrics:
          - type: cos_sim_pearson
            value: 81.23278996774297
          - type: cos_sim_spearman
            value: 81.369375466486
          - type: euclidean_pearson
            value: 79.91030863727944
          - type: euclidean_spearman
            value: 81.36824495466793
          - type: manhattan_pearson
            value: 79.88047052896854
          - type: manhattan_spearman
            value: 81.3369604332008
      - task:
          type: Reranking
        dataset:
          name: MTEB T2Reranking
          type: C-MTEB/T2Reranking
          config: default
          split: dev
          revision: 76631901a18387f85eaa53e5450019b87ad58ef9
        metrics:
          - type: map
            value: 68.109205221286
          - type: mrr
            value: 78.40703619520477
      - task:
          type: Retrieval
        dataset:
          name: MTEB T2Retrieval
          type: C-MTEB/T2Retrieval
          config: default
          split: dev
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
        metrics:
          - type: map_at_1
            value: 26.704
          - type: map_at_10
            value: 75.739
          - type: map_at_100
            value: 79.606
          - type: map_at_1000
            value: 79.666
          - type: map_at_3
            value: 52.803
          - type: map_at_5
            value: 65.068
          - type: mrr_at_1
            value: 88.48899999999999
          - type: mrr_at_10
            value: 91.377
          - type: mrr_at_100
            value: 91.474
          - type: mrr_at_1000
            value: 91.47800000000001
          - type: mrr_at_3
            value: 90.846
          - type: mrr_at_5
            value: 91.18
          - type: ndcg_at_1
            value: 88.48899999999999
          - type: ndcg_at_10
            value: 83.581
          - type: ndcg_at_100
            value: 87.502
          - type: ndcg_at_1000
            value: 88.1
          - type: ndcg_at_3
            value: 84.433
          - type: ndcg_at_5
            value: 83.174
          - type: precision_at_1
            value: 88.48899999999999
          - type: precision_at_10
            value: 41.857
          - type: precision_at_100
            value: 5.039
          - type: precision_at_1000
            value: 0.517
          - type: precision_at_3
            value: 73.938
          - type: precision_at_5
            value: 62.163000000000004
          - type: recall_at_1
            value: 26.704
          - type: recall_at_10
            value: 83.092
          - type: recall_at_100
            value: 95.659
          - type: recall_at_1000
            value: 98.779
          - type: recall_at_3
            value: 54.678000000000004
          - type: recall_at_5
            value: 68.843
      - task:
          type: Classification
        dataset:
          name: MTEB TNews
          type: C-MTEB/TNews-classification
          config: default
          split: validation
          revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
        metrics:
          - type: accuracy
            value: 51.235
          - type: f1
            value: 48.14373844331604
      - task:
          type: Clustering
        dataset:
          name: MTEB ThuNewsClusteringP2P
          type: C-MTEB/ThuNewsClusteringP2P
          config: default
          split: test
          revision: 5798586b105c0434e4f0fe5e767abe619442cf93
        metrics:
          - type: v_measure
            value: 87.42930040493792
      - task:
          type: Clustering
        dataset:
          name: MTEB ThuNewsClusteringS2S
          type: C-MTEB/ThuNewsClusteringS2S
          config: default
          split: test
          revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
        metrics:
          - type: v_measure
            value: 87.90254094650042
      - task:
          type: Retrieval
        dataset:
          name: MTEB VideoRetrieval
          type: C-MTEB/VideoRetrieval
          config: default
          split: dev
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
        metrics:
          - type: map_at_1
            value: 54.900000000000006
          - type: map_at_10
            value: 64.92
          - type: map_at_100
            value: 65.424
          - type: map_at_1000
            value: 65.43900000000001
          - type: map_at_3
            value: 63.132999999999996
          - type: map_at_5
            value: 64.208
          - type: mrr_at_1
            value: 54.900000000000006
          - type: mrr_at_10
            value: 64.92
          - type: mrr_at_100
            value: 65.424
          - type: mrr_at_1000
            value: 65.43900000000001
          - type: mrr_at_3
            value: 63.132999999999996
          - type: mrr_at_5
            value: 64.208
          - type: ndcg_at_1
            value: 54.900000000000006
          - type: ndcg_at_10
            value: 69.41199999999999
          - type: ndcg_at_100
            value: 71.824
          - type: ndcg_at_1000
            value: 72.301
          - type: ndcg_at_3
            value: 65.79700000000001
          - type: ndcg_at_5
            value: 67.713
          - type: precision_at_1
            value: 54.900000000000006
          - type: precision_at_10
            value: 8.33
          - type: precision_at_100
            value: 0.9450000000000001
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 24.5
          - type: precision_at_5
            value: 15.620000000000001
          - type: recall_at_1
            value: 54.900000000000006
          - type: recall_at_10
            value: 83.3
          - type: recall_at_100
            value: 94.5
          - type: recall_at_1000
            value: 98.4
          - type: recall_at_3
            value: 73.5
          - type: recall_at_5
            value: 78.10000000000001
      - task:
          type: Classification
        dataset:
          name: MTEB Waimai
          type: C-MTEB/waimai-classification
          config: default
          split: test
          revision: 339287def212450dcaa9df8c22bf93e9980c7023
        metrics:
          - type: accuracy
            value: 88.63
          - type: ap
            value: 73.78658340897097
          - type: f1
            value: 87.16764294033919

agier9/gte-Qwen1.5-7B-instruct-Q5_K_M-GGUF

This model was converted to GGUF format from Alibaba-NLP/gte-Qwen1.5-7B-instruct using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew.

brew install ggerganov/ggerganov/llama.cpp

Invoke the llama.cpp server or the CLI. CLI:

llama-cli --hf-repo agier9/gte-Qwen1.5-7B-instruct-Q5_K_M-GGUF --model gte-qwen1.5-7b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo agier9/gte-Qwen1.5-7B-instruct-Q5_K_M-GGUF --model gte-qwen1.5-7b-instruct-q5_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

git clone https://github.com/ggerganov/llama.cpp && \
cd llama.cpp && \
make && \
./main -m gte-qwen1.5-7b-instruct-q5_k_m.gguf -n 128