BEE-spoke-data/smol_llama-220M-bees-internal-GGUF

Quantized GGUF model files for smol_llama-220M-bees-internal from BEE-spoke-data

Original Model Card:

smol_llama-220M-bees-internal

This model is a fine-tuned version of BEE-spoke-data/smol_llama-220M-GQA on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6892
  • Accuracy: 0.4610

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 27634
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.0959 0.1 50 2.9671 0.4245
2.9975 0.19 100 2.8691 0.4371
2.8938 0.29 150 2.8271 0.4419
2.9027 0.39 200 2.7973 0.4457
2.8983 0.49 250 2.7719 0.4489
2.8789 0.58 300 2.7519 0.4515
2.8672 0.68 350 2.7366 0.4535
2.8369 0.78 400 2.7230 0.4558
2.8271 0.88 450 2.7118 0.4569
2.7775 0.97 500 2.7034 0.4587
2.671 1.07 550 2.6996 0.4592
2.695 1.17 600 2.6965 0.4598
2.6962 1.27 650 2.6934 0.4601
2.6034 1.36 700 2.6916 0.4605
2.716 1.46 750 2.6901 0.4609
2.6968 1.56 800 2.6896 0.4608
2.6626 1.66 850 2.6893 0.4609
2.6881 1.75 900 2.6891 0.4610
2.7339 1.85 950 2.6891 0.4610
2.6729 1.95 1000 2.6892 0.4610

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
2
GGUF
Model size
218M params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for afrideva/smol_llama-220M-bees-internal-GGUF

Dataset used to train afrideva/smol_llama-220M-bees-internal-GGUF