afrideva's picture
Upload README.md with huggingface_hub
fb3569a verified
metadata
base_model: avsolatorio/GIST-all-MiniLM-L6-v2
inference: true
language:
  - en
library_name: sentence-transformers
license: mit
model-index:
  - name: GIST-all-MiniLM-L6-v2
    results:
      - dataset:
          config: en
          name: MTEB AmazonCounterfactualClassification (en)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 72.8955223880597
          - type: ap
            value: 35.447605103320775
          - type: f1
            value: 66.82951715365854
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB AmazonPolarityClassification
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
          split: test
          type: mteb/amazon_polarity
        metrics:
          - type: accuracy
            value: 87.19474999999998
          - type: ap
            value: 83.09577890808514
          - type: f1
            value: 87.13833121762009
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB AmazonReviewsClassification (en)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 42.556000000000004
          - type: f1
            value: 42.236256693772276
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ArguAna
          revision: None
          split: test
          type: arguana
        metrics:
          - type: map_at_1
            value: 26.884999999999998
          - type: map_at_10
            value: 42.364000000000004
          - type: map_at_100
            value: 43.382
          - type: map_at_1000
            value: 43.391000000000005
          - type: map_at_3
            value: 37.162
          - type: map_at_5
            value: 40.139
          - type: mrr_at_1
            value: 26.884999999999998
          - type: mrr_at_10
            value: 42.193999999999996
          - type: mrr_at_100
            value: 43.211
          - type: mrr_at_1000
            value: 43.221
          - type: mrr_at_3
            value: 36.949
          - type: mrr_at_5
            value: 40.004
          - type: ndcg_at_1
            value: 26.884999999999998
          - type: ndcg_at_10
            value: 51.254999999999995
          - type: ndcg_at_100
            value: 55.481
          - type: ndcg_at_1000
            value: 55.68300000000001
          - type: ndcg_at_3
            value: 40.565
          - type: ndcg_at_5
            value: 45.882
          - type: precision_at_1
            value: 26.884999999999998
          - type: precision_at_10
            value: 7.9799999999999995
          - type: precision_at_100
            value: 0.98
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 16.808999999999997
          - type: precision_at_5
            value: 12.645999999999999
          - type: recall_at_1
            value: 26.884999999999998
          - type: recall_at_10
            value: 79.801
          - type: recall_at_100
            value: 98.009
          - type: recall_at_1000
            value: 99.502
          - type: recall_at_3
            value: 50.427
          - type: recall_at_5
            value: 63.229
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ArxivClusteringP2P
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
          split: test
          type: mteb/arxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 45.31044837358167
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ArxivClusteringS2S
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
          split: test
          type: mteb/arxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 35.44751738734691
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AskUbuntuDupQuestions
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
          split: test
          type: mteb/askubuntudupquestions-reranking
        metrics:
          - type: map
            value: 62.96517580629869
          - type: mrr
            value: 76.30051004704744
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB BIOSSES
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
          split: test
          type: mteb/biosses-sts
        metrics:
          - type: cos_sim_pearson
            value: 83.97262600499639
          - type: cos_sim_spearman
            value: 81.25787561220484
          - type: euclidean_pearson
            value: 64.96260261677082
          - type: euclidean_spearman
            value: 64.17616109254686
          - type: manhattan_pearson
            value: 65.05620628102835
          - type: manhattan_spearman
            value: 64.71171546419122
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB Banking77Classification
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
          split: test
          type: mteb/banking77
        metrics:
          - type: accuracy
            value: 84.2435064935065
          - type: f1
            value: 84.2334859253828
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BiorxivClusteringP2P
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
          split: test
          type: mteb/biorxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 38.38358435972693
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB BiorxivClusteringS2S
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
          split: test
          type: mteb/biorxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 31.093619653843124
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CQADupstackAndroidRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 35.016999999999996
          - type: map_at_10
            value: 47.019
          - type: map_at_100
            value: 48.634
          - type: map_at_1000
            value: 48.757
          - type: map_at_3
            value: 43.372
          - type: map_at_5
            value: 45.314
          - type: mrr_at_1
            value: 43.491
          - type: mrr_at_10
            value: 53.284
          - type: mrr_at_100
            value: 54.038
          - type: mrr_at_1000
            value: 54.071000000000005
          - type: mrr_at_3
            value: 51.001
          - type: mrr_at_5
            value: 52.282
          - type: ndcg_at_1
            value: 43.491
          - type: ndcg_at_10
            value: 53.498999999999995
          - type: ndcg_at_100
            value: 58.733999999999995
          - type: ndcg_at_1000
            value: 60.307
          - type: ndcg_at_3
            value: 48.841
          - type: ndcg_at_5
            value: 50.76199999999999
          - type: precision_at_1
            value: 43.491
          - type: precision_at_10
            value: 10.315000000000001
          - type: precision_at_100
            value: 1.6209999999999998
          - type: precision_at_1000
            value: 0.20500000000000002
          - type: precision_at_3
            value: 23.462
          - type: precision_at_5
            value: 16.652
          - type: recall_at_1
            value: 35.016999999999996
          - type: recall_at_10
            value: 64.92
          - type: recall_at_100
            value: 86.605
          - type: recall_at_1000
            value: 96.174
          - type: recall_at_3
            value: 50.99
          - type: recall_at_5
            value: 56.93
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackEnglishRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 29.866
          - type: map_at_10
            value: 40.438
          - type: map_at_100
            value: 41.77
          - type: map_at_1000
            value: 41.913
          - type: map_at_3
            value: 37.634
          - type: map_at_5
            value: 39.226
          - type: mrr_at_1
            value: 37.834
          - type: mrr_at_10
            value: 46.765
          - type: mrr_at_100
            value: 47.410000000000004
          - type: mrr_at_1000
            value: 47.461
          - type: mrr_at_3
            value: 44.735
          - type: mrr_at_5
            value: 46.028000000000006
          - type: ndcg_at_1
            value: 37.834
          - type: ndcg_at_10
            value: 46.303
          - type: ndcg_at_100
            value: 50.879
          - type: ndcg_at_1000
            value: 53.112
          - type: ndcg_at_3
            value: 42.601
          - type: ndcg_at_5
            value: 44.384
          - type: precision_at_1
            value: 37.834
          - type: precision_at_10
            value: 8.898
          - type: precision_at_100
            value: 1.4409999999999998
          - type: precision_at_1000
            value: 0.19499999999999998
          - type: precision_at_3
            value: 20.977
          - type: precision_at_5
            value: 14.841
          - type: recall_at_1
            value: 29.866
          - type: recall_at_10
            value: 56.06100000000001
          - type: recall_at_100
            value: 75.809
          - type: recall_at_1000
            value: 89.875
          - type: recall_at_3
            value: 44.707
          - type: recall_at_5
            value: 49.846000000000004
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackGamingRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 38.985
          - type: map_at_10
            value: 51.165000000000006
          - type: map_at_100
            value: 52.17
          - type: map_at_1000
            value: 52.229000000000006
          - type: map_at_3
            value: 48.089999999999996
          - type: map_at_5
            value: 49.762
          - type: mrr_at_1
            value: 44.577
          - type: mrr_at_10
            value: 54.493
          - type: mrr_at_100
            value: 55.137
          - type: mrr_at_1000
            value: 55.167
          - type: mrr_at_3
            value: 52.079
          - type: mrr_at_5
            value: 53.518
          - type: ndcg_at_1
            value: 44.577
          - type: ndcg_at_10
            value: 56.825
          - type: ndcg_at_100
            value: 60.842
          - type: ndcg_at_1000
            value: 62.015
          - type: ndcg_at_3
            value: 51.699
          - type: ndcg_at_5
            value: 54.11
          - type: precision_at_1
            value: 44.577
          - type: precision_at_10
            value: 9.11
          - type: precision_at_100
            value: 1.206
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 23.156
          - type: precision_at_5
            value: 15.737000000000002
          - type: recall_at_1
            value: 38.985
          - type: recall_at_10
            value: 70.164
          - type: recall_at_100
            value: 87.708
          - type: recall_at_1000
            value: 95.979
          - type: recall_at_3
            value: 56.285
          - type: recall_at_5
            value: 62.303
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackGisRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 28.137
          - type: map_at_10
            value: 36.729
          - type: map_at_100
            value: 37.851
          - type: map_at_1000
            value: 37.932
          - type: map_at_3
            value: 34.074
          - type: map_at_5
            value: 35.398
          - type: mrr_at_1
            value: 30.621
          - type: mrr_at_10
            value: 39.007
          - type: mrr_at_100
            value: 39.961
          - type: mrr_at_1000
            value: 40.02
          - type: mrr_at_3
            value: 36.591
          - type: mrr_at_5
            value: 37.806
          - type: ndcg_at_1
            value: 30.621
          - type: ndcg_at_10
            value: 41.772
          - type: ndcg_at_100
            value: 47.181
          - type: ndcg_at_1000
            value: 49.053999999999995
          - type: ndcg_at_3
            value: 36.577
          - type: ndcg_at_5
            value: 38.777
          - type: precision_at_1
            value: 30.621
          - type: precision_at_10
            value: 6.372999999999999
          - type: precision_at_100
            value: 0.955
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 15.367
          - type: precision_at_5
            value: 10.531
          - type: recall_at_1
            value: 28.137
          - type: recall_at_10
            value: 55.162
          - type: recall_at_100
            value: 79.931
          - type: recall_at_1000
            value: 93.67
          - type: recall_at_3
            value: 41.057
          - type: recall_at_5
            value: 46.327
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackMathematicaRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 16.798
          - type: map_at_10
            value: 25.267
          - type: map_at_100
            value: 26.579000000000004
          - type: map_at_1000
            value: 26.697
          - type: map_at_3
            value: 22.456
          - type: map_at_5
            value: 23.912
          - type: mrr_at_1
            value: 20.771
          - type: mrr_at_10
            value: 29.843999999999998
          - type: mrr_at_100
            value: 30.849
          - type: mrr_at_1000
            value: 30.916
          - type: mrr_at_3
            value: 27.156000000000002
          - type: mrr_at_5
            value: 28.518
          - type: ndcg_at_1
            value: 20.771
          - type: ndcg_at_10
            value: 30.792
          - type: ndcg_at_100
            value: 36.945
          - type: ndcg_at_1000
            value: 39.619
          - type: ndcg_at_3
            value: 25.52
          - type: ndcg_at_5
            value: 27.776
          - type: precision_at_1
            value: 20.771
          - type: precision_at_10
            value: 5.734
          - type: precision_at_100
            value: 1.031
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 12.148
          - type: precision_at_5
            value: 9.055
          - type: recall_at_1
            value: 16.798
          - type: recall_at_10
            value: 43.332
          - type: recall_at_100
            value: 70.016
          - type: recall_at_1000
            value: 88.90400000000001
          - type: recall_at_3
            value: 28.842000000000002
          - type: recall_at_5
            value: 34.37
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackPhysicsRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 31.180000000000003
          - type: map_at_10
            value: 41.78
          - type: map_at_100
            value: 43.102000000000004
          - type: map_at_1000
            value: 43.222
          - type: map_at_3
            value: 38.505
          - type: map_at_5
            value: 40.443
          - type: mrr_at_1
            value: 37.824999999999996
          - type: mrr_at_10
            value: 47.481
          - type: mrr_at_100
            value: 48.268
          - type: mrr_at_1000
            value: 48.313
          - type: mrr_at_3
            value: 44.946999999999996
          - type: mrr_at_5
            value: 46.492
          - type: ndcg_at_1
            value: 37.824999999999996
          - type: ndcg_at_10
            value: 47.827
          - type: ndcg_at_100
            value: 53.407000000000004
          - type: ndcg_at_1000
            value: 55.321
          - type: ndcg_at_3
            value: 42.815
          - type: ndcg_at_5
            value: 45.363
          - type: precision_at_1
            value: 37.824999999999996
          - type: precision_at_10
            value: 8.652999999999999
          - type: precision_at_100
            value: 1.354
          - type: precision_at_1000
            value: 0.172
          - type: precision_at_3
            value: 20.372
          - type: precision_at_5
            value: 14.591000000000001
          - type: recall_at_1
            value: 31.180000000000003
          - type: recall_at_10
            value: 59.894000000000005
          - type: recall_at_100
            value: 83.722
          - type: recall_at_1000
            value: 95.705
          - type: recall_at_3
            value: 45.824
          - type: recall_at_5
            value: 52.349999999999994
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackProgrammersRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 24.66
          - type: map_at_10
            value: 34.141
          - type: map_at_100
            value: 35.478
          - type: map_at_1000
            value: 35.594
          - type: map_at_3
            value: 30.446
          - type: map_at_5
            value: 32.583
          - type: mrr_at_1
            value: 29.909000000000002
          - type: mrr_at_10
            value: 38.949
          - type: mrr_at_100
            value: 39.803
          - type: mrr_at_1000
            value: 39.867999999999995
          - type: mrr_at_3
            value: 35.921
          - type: mrr_at_5
            value: 37.753
          - type: ndcg_at_1
            value: 29.909000000000002
          - type: ndcg_at_10
            value: 40.012
          - type: ndcg_at_100
            value: 45.707
          - type: ndcg_at_1000
            value: 48.15
          - type: ndcg_at_3
            value: 34.015
          - type: ndcg_at_5
            value: 37.002
          - type: precision_at_1
            value: 29.909000000000002
          - type: precision_at_10
            value: 7.693999999999999
          - type: precision_at_100
            value: 1.2229999999999999
          - type: precision_at_1000
            value: 0.16
          - type: precision_at_3
            value: 16.323999999999998
          - type: precision_at_5
            value: 12.306000000000001
          - type: recall_at_1
            value: 24.66
          - type: recall_at_10
            value: 52.478
          - type: recall_at_100
            value: 77.051
          - type: recall_at_1000
            value: 93.872
          - type: recall_at_3
            value: 36.382999999999996
          - type: recall_at_5
            value: 43.903999999999996
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 26.768416666666667
          - type: map_at_10
            value: 36.2485
          - type: map_at_100
            value: 37.520833333333336
          - type: map_at_1000
            value: 37.64033333333334
          - type: map_at_3
            value: 33.25791666666667
          - type: map_at_5
            value: 34.877250000000004
          - type: mrr_at_1
            value: 31.65408333333334
          - type: mrr_at_10
            value: 40.43866666666667
          - type: mrr_at_100
            value: 41.301249999999996
          - type: mrr_at_1000
            value: 41.357499999999995
          - type: mrr_at_3
            value: 37.938916666666664
          - type: mrr_at_5
            value: 39.35183333333334
          - type: ndcg_at_1
            value: 31.65408333333334
          - type: ndcg_at_10
            value: 41.76983333333334
          - type: ndcg_at_100
            value: 47.138
          - type: ndcg_at_1000
            value: 49.33816666666667
          - type: ndcg_at_3
            value: 36.76683333333333
          - type: ndcg_at_5
            value: 39.04441666666666
          - type: precision_at_1
            value: 31.65408333333334
          - type: precision_at_10
            value: 7.396249999999998
          - type: precision_at_100
            value: 1.1974166666666666
          - type: precision_at_1000
            value: 0.15791666666666668
          - type: precision_at_3
            value: 16.955583333333333
          - type: precision_at_5
            value: 12.09925
          - type: recall_at_1
            value: 26.768416666666667
          - type: recall_at_10
            value: 53.82366666666667
          - type: recall_at_100
            value: 77.39600000000002
          - type: recall_at_1000
            value: 92.46300000000001
          - type: recall_at_3
            value: 39.90166666666667
          - type: recall_at_5
            value: 45.754000000000005
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackStatsRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 24.369
          - type: map_at_10
            value: 32.025
          - type: map_at_100
            value: 33.08
          - type: map_at_1000
            value: 33.169
          - type: map_at_3
            value: 29.589
          - type: map_at_5
            value: 30.894
          - type: mrr_at_1
            value: 27.301
          - type: mrr_at_10
            value: 34.64
          - type: mrr_at_100
            value: 35.556
          - type: mrr_at_1000
            value: 35.616
          - type: mrr_at_3
            value: 32.515
          - type: mrr_at_5
            value: 33.666000000000004
          - type: ndcg_at_1
            value: 27.301
          - type: ndcg_at_10
            value: 36.386
          - type: ndcg_at_100
            value: 41.598
          - type: ndcg_at_1000
            value: 43.864999999999995
          - type: ndcg_at_3
            value: 32.07
          - type: ndcg_at_5
            value: 34.028999999999996
          - type: precision_at_1
            value: 27.301
          - type: precision_at_10
            value: 5.782
          - type: precision_at_100
            value: 0.923
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 13.804
          - type: precision_at_5
            value: 9.693
          - type: recall_at_1
            value: 24.369
          - type: recall_at_10
            value: 47.026
          - type: recall_at_100
            value: 70.76400000000001
          - type: recall_at_1000
            value: 87.705
          - type: recall_at_3
            value: 35.366
          - type: recall_at_5
            value: 40.077
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackTexRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 17.878
          - type: map_at_10
            value: 25.582
          - type: map_at_100
            value: 26.848
          - type: map_at_1000
            value: 26.985
          - type: map_at_3
            value: 22.997
          - type: map_at_5
            value: 24.487000000000002
          - type: mrr_at_1
            value: 22.023
          - type: mrr_at_10
            value: 29.615000000000002
          - type: mrr_at_100
            value: 30.656
          - type: mrr_at_1000
            value: 30.737
          - type: mrr_at_3
            value: 27.322999999999997
          - type: mrr_at_5
            value: 28.665000000000003
          - type: ndcg_at_1
            value: 22.023
          - type: ndcg_at_10
            value: 30.476999999999997
          - type: ndcg_at_100
            value: 36.258
          - type: ndcg_at_1000
            value: 39.287
          - type: ndcg_at_3
            value: 25.995
          - type: ndcg_at_5
            value: 28.174
          - type: precision_at_1
            value: 22.023
          - type: precision_at_10
            value: 5.657
          - type: precision_at_100
            value: 1.01
          - type: precision_at_1000
            value: 0.145
          - type: precision_at_3
            value: 12.491
          - type: precision_at_5
            value: 9.112
          - type: recall_at_1
            value: 17.878
          - type: recall_at_10
            value: 41.155
          - type: recall_at_100
            value: 66.62599999999999
          - type: recall_at_1000
            value: 88.08200000000001
          - type: recall_at_3
            value: 28.505000000000003
          - type: recall_at_5
            value: 34.284
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackUnixRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 26.369999999999997
          - type: map_at_10
            value: 36.115
          - type: map_at_100
            value: 37.346000000000004
          - type: map_at_1000
            value: 37.449
          - type: map_at_3
            value: 32.976
          - type: map_at_5
            value: 34.782000000000004
          - type: mrr_at_1
            value: 30.784
          - type: mrr_at_10
            value: 40.014
          - type: mrr_at_100
            value: 40.913
          - type: mrr_at_1000
            value: 40.967999999999996
          - type: mrr_at_3
            value: 37.205
          - type: mrr_at_5
            value: 38.995999999999995
          - type: ndcg_at_1
            value: 30.784
          - type: ndcg_at_10
            value: 41.797000000000004
          - type: ndcg_at_100
            value: 47.355000000000004
          - type: ndcg_at_1000
            value: 49.535000000000004
          - type: ndcg_at_3
            value: 36.29
          - type: ndcg_at_5
            value: 39.051
          - type: precision_at_1
            value: 30.784
          - type: precision_at_10
            value: 7.164
          - type: precision_at_100
            value: 1.122
          - type: precision_at_1000
            value: 0.14200000000000002
          - type: precision_at_3
            value: 16.636
          - type: precision_at_5
            value: 11.996
          - type: recall_at_1
            value: 26.369999999999997
          - type: recall_at_10
            value: 55.010000000000005
          - type: recall_at_100
            value: 79.105
          - type: recall_at_1000
            value: 94.053
          - type: recall_at_3
            value: 40.139
          - type: recall_at_5
            value: 47.089
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackWebmastersRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 26.421
          - type: map_at_10
            value: 35.253
          - type: map_at_100
            value: 36.97
          - type: map_at_1000
            value: 37.195
          - type: map_at_3
            value: 32.068000000000005
          - type: map_at_5
            value: 33.763
          - type: mrr_at_1
            value: 31.423000000000002
          - type: mrr_at_10
            value: 39.995999999999995
          - type: mrr_at_100
            value: 40.977999999999994
          - type: mrr_at_1000
            value: 41.024
          - type: mrr_at_3
            value: 36.989
          - type: mrr_at_5
            value: 38.629999999999995
          - type: ndcg_at_1
            value: 31.423000000000002
          - type: ndcg_at_10
            value: 41.382000000000005
          - type: ndcg_at_100
            value: 47.532000000000004
          - type: ndcg_at_1000
            value: 49.829
          - type: ndcg_at_3
            value: 35.809000000000005
          - type: ndcg_at_5
            value: 38.308
          - type: precision_at_1
            value: 31.423000000000002
          - type: precision_at_10
            value: 7.885000000000001
          - type: precision_at_100
            value: 1.609
          - type: precision_at_1000
            value: 0.246
          - type: precision_at_3
            value: 16.469
          - type: precision_at_5
            value: 12.174
          - type: recall_at_1
            value: 26.421
          - type: recall_at_10
            value: 53.618
          - type: recall_at_100
            value: 80.456
          - type: recall_at_1000
            value: 94.505
          - type: recall_at_3
            value: 37.894
          - type: recall_at_5
            value: 44.352999999999994
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CQADupstackWordpressRetrieval
          revision: None
          split: test
          type: BeIR/cqadupstack
        metrics:
          - type: map_at_1
            value: 21.54
          - type: map_at_10
            value: 29.468
          - type: map_at_100
            value: 30.422
          - type: map_at_1000
            value: 30.542
          - type: map_at_3
            value: 26.888
          - type: map_at_5
            value: 27.962999999999997
          - type: mrr_at_1
            value: 23.29
          - type: mrr_at_10
            value: 31.176
          - type: mrr_at_100
            value: 32.046
          - type: mrr_at_1000
            value: 32.129000000000005
          - type: mrr_at_3
            value: 28.804999999999996
          - type: mrr_at_5
            value: 29.868
          - type: ndcg_at_1
            value: 23.29
          - type: ndcg_at_10
            value: 34.166000000000004
          - type: ndcg_at_100
            value: 39.217999999999996
          - type: ndcg_at_1000
            value: 41.964
          - type: ndcg_at_3
            value: 28.970000000000002
          - type: ndcg_at_5
            value: 30.797
          - type: precision_at_1
            value: 23.29
          - type: precision_at_10
            value: 5.489999999999999
          - type: precision_at_100
            value: 0.874
          - type: precision_at_1000
            value: 0.122
          - type: precision_at_3
            value: 12.261
          - type: precision_at_5
            value: 8.503
          - type: recall_at_1
            value: 21.54
          - type: recall_at_10
            value: 47.064
          - type: recall_at_100
            value: 70.959
          - type: recall_at_1000
            value: 91.032
          - type: recall_at_3
            value: 32.828
          - type: recall_at_5
            value: 37.214999999999996
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ClimateFEVER
          revision: None
          split: test
          type: climate-fever
        metrics:
          - type: map_at_1
            value: 10.102
          - type: map_at_10
            value: 17.469
          - type: map_at_100
            value: 19.244
          - type: map_at_1000
            value: 19.435
          - type: map_at_3
            value: 14.257
          - type: map_at_5
            value: 16.028000000000002
          - type: mrr_at_1
            value: 22.866
          - type: mrr_at_10
            value: 33.535
          - type: mrr_at_100
            value: 34.583999999999996
          - type: mrr_at_1000
            value: 34.622
          - type: mrr_at_3
            value: 29.946
          - type: mrr_at_5
            value: 32.157000000000004
          - type: ndcg_at_1
            value: 22.866
          - type: ndcg_at_10
            value: 25.16
          - type: ndcg_at_100
            value: 32.347
          - type: ndcg_at_1000
            value: 35.821
          - type: ndcg_at_3
            value: 19.816
          - type: ndcg_at_5
            value: 22.026
          - type: precision_at_1
            value: 22.866
          - type: precision_at_10
            value: 8.072
          - type: precision_at_100
            value: 1.5709999999999997
          - type: precision_at_1000
            value: 0.22200000000000003
          - type: precision_at_3
            value: 14.701
          - type: precision_at_5
            value: 11.960999999999999
          - type: recall_at_1
            value: 10.102
          - type: recall_at_10
            value: 31.086000000000002
          - type: recall_at_100
            value: 55.896
          - type: recall_at_1000
            value: 75.375
          - type: recall_at_3
            value: 18.343999999999998
          - type: recall_at_5
            value: 24.102
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DBPedia
          revision: None
          split: test
          type: dbpedia-entity
        metrics:
          - type: map_at_1
            value: 7.961
          - type: map_at_10
            value: 16.058
          - type: map_at_100
            value: 21.878
          - type: map_at_1000
            value: 23.156
          - type: map_at_3
            value: 12.206999999999999
          - type: map_at_5
            value: 13.747000000000002
          - type: mrr_at_1
            value: 60.5
          - type: mrr_at_10
            value: 68.488
          - type: mrr_at_100
            value: 69.02199999999999
          - type: mrr_at_1000
            value: 69.03200000000001
          - type: mrr_at_3
            value: 66.792
          - type: mrr_at_5
            value: 67.62899999999999
          - type: ndcg_at_1
            value: 49.125
          - type: ndcg_at_10
            value: 34.827999999999996
          - type: ndcg_at_100
            value: 38.723
          - type: ndcg_at_1000
            value: 45.988
          - type: ndcg_at_3
            value: 40.302
          - type: ndcg_at_5
            value: 36.781000000000006
          - type: precision_at_1
            value: 60.5
          - type: precision_at_10
            value: 26.825
          - type: precision_at_100
            value: 8.445
          - type: precision_at_1000
            value: 1.7000000000000002
          - type: precision_at_3
            value: 43.25
          - type: precision_at_5
            value: 34.5
          - type: recall_at_1
            value: 7.961
          - type: recall_at_10
            value: 20.843
          - type: recall_at_100
            value: 43.839
          - type: recall_at_1000
            value: 67.33
          - type: recall_at_3
            value: 13.516
          - type: recall_at_5
            value: 15.956000000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EmotionClassification
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
          split: test
          type: mteb/emotion
        metrics:
          - type: accuracy
            value: 52.06000000000001
          - type: f1
            value: 47.21494728335567
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB FEVER
          revision: None
          split: test
          type: fever
        metrics:
          - type: map_at_1
            value: 56.798
          - type: map_at_10
            value: 67.644
          - type: map_at_100
            value: 68.01700000000001
          - type: map_at_1000
            value: 68.038
          - type: map_at_3
            value: 65.539
          - type: map_at_5
            value: 66.912
          - type: mrr_at_1
            value: 61.221000000000004
          - type: mrr_at_10
            value: 71.97099999999999
          - type: mrr_at_100
            value: 72.262
          - type: mrr_at_1000
            value: 72.27
          - type: mrr_at_3
            value: 70.052
          - type: mrr_at_5
            value: 71.324
          - type: ndcg_at_1
            value: 61.221000000000004
          - type: ndcg_at_10
            value: 73.173
          - type: ndcg_at_100
            value: 74.779
          - type: ndcg_at_1000
            value: 75.229
          - type: ndcg_at_3
            value: 69.291
          - type: ndcg_at_5
            value: 71.552
          - type: precision_at_1
            value: 61.221000000000004
          - type: precision_at_10
            value: 9.449
          - type: precision_at_100
            value: 1.0370000000000001
          - type: precision_at_1000
            value: 0.109
          - type: precision_at_3
            value: 27.467999999999996
          - type: precision_at_5
            value: 17.744
          - type: recall_at_1
            value: 56.798
          - type: recall_at_10
            value: 85.991
          - type: recall_at_100
            value: 92.973
          - type: recall_at_1000
            value: 96.089
          - type: recall_at_3
            value: 75.576
          - type: recall_at_5
            value: 81.12
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FiQA2018
          revision: None
          split: test
          type: fiqa
        metrics:
          - type: map_at_1
            value: 18.323
          - type: map_at_10
            value: 30.279
          - type: map_at_100
            value: 32.153999999999996
          - type: map_at_1000
            value: 32.339
          - type: map_at_3
            value: 26.336
          - type: map_at_5
            value: 28.311999999999998
          - type: mrr_at_1
            value: 35.339999999999996
          - type: mrr_at_10
            value: 44.931
          - type: mrr_at_100
            value: 45.818999999999996
          - type: mrr_at_1000
            value: 45.864
          - type: mrr_at_3
            value: 42.618
          - type: mrr_at_5
            value: 43.736999999999995
          - type: ndcg_at_1
            value: 35.339999999999996
          - type: ndcg_at_10
            value: 37.852999999999994
          - type: ndcg_at_100
            value: 44.888
          - type: ndcg_at_1000
            value: 48.069
          - type: ndcg_at_3
            value: 34.127
          - type: ndcg_at_5
            value: 35.026
          - type: precision_at_1
            value: 35.339999999999996
          - type: precision_at_10
            value: 10.617
          - type: precision_at_100
            value: 1.7930000000000001
          - type: precision_at_1000
            value: 0.23600000000000002
          - type: precision_at_3
            value: 22.582
          - type: precision_at_5
            value: 16.605
          - type: recall_at_1
            value: 18.323
          - type: recall_at_10
            value: 44.948
          - type: recall_at_100
            value: 71.11800000000001
          - type: recall_at_1000
            value: 90.104
          - type: recall_at_3
            value: 31.661
          - type: recall_at_5
            value: 36.498000000000005
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HotpotQA
          revision: None
          split: test
          type: hotpotqa
        metrics:
          - type: map_at_1
            value: 30.668
          - type: map_at_10
            value: 43.669999999999995
          - type: map_at_100
            value: 44.646
          - type: map_at_1000
            value: 44.731
          - type: map_at_3
            value: 40.897
          - type: map_at_5
            value: 42.559999999999995
          - type: mrr_at_1
            value: 61.336999999999996
          - type: mrr_at_10
            value: 68.496
          - type: mrr_at_100
            value: 68.916
          - type: mrr_at_1000
            value: 68.938
          - type: mrr_at_3
            value: 66.90700000000001
          - type: mrr_at_5
            value: 67.91199999999999
          - type: ndcg_at_1
            value: 61.336999999999996
          - type: ndcg_at_10
            value: 52.588
          - type: ndcg_at_100
            value: 56.389
          - type: ndcg_at_1000
            value: 58.187999999999995
          - type: ndcg_at_3
            value: 48.109
          - type: ndcg_at_5
            value: 50.498
          - type: precision_at_1
            value: 61.336999999999996
          - type: precision_at_10
            value: 11.033
          - type: precision_at_100
            value: 1.403
          - type: precision_at_1000
            value: 0.164
          - type: precision_at_3
            value: 30.105999999999998
          - type: precision_at_5
            value: 19.954
          - type: recall_at_1
            value: 30.668
          - type: recall_at_10
            value: 55.165
          - type: recall_at_100
            value: 70.169
          - type: recall_at_1000
            value: 82.12
          - type: recall_at_3
            value: 45.159
          - type: recall_at_5
            value: 49.885000000000005
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ImdbClassification
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
          split: test
          type: mteb/imdb
        metrics:
          - type: accuracy
            value: 78.542
          - type: ap
            value: 72.50692137216646
          - type: f1
            value: 78.40630687221642
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MSMARCO
          revision: None
          split: dev
          type: msmarco
        metrics:
          - type: map_at_1
            value: 18.613
          - type: map_at_10
            value: 29.98
          - type: map_at_100
            value: 31.136999999999997
          - type: map_at_1000
            value: 31.196
          - type: map_at_3
            value: 26.339000000000002
          - type: map_at_5
            value: 28.351
          - type: mrr_at_1
            value: 19.054
          - type: mrr_at_10
            value: 30.476
          - type: mrr_at_100
            value: 31.588
          - type: mrr_at_1000
            value: 31.641000000000002
          - type: mrr_at_3
            value: 26.834000000000003
          - type: mrr_at_5
            value: 28.849000000000004
          - type: ndcg_at_1
            value: 19.083
          - type: ndcg_at_10
            value: 36.541000000000004
          - type: ndcg_at_100
            value: 42.35
          - type: ndcg_at_1000
            value: 43.9
          - type: ndcg_at_3
            value: 29.015
          - type: ndcg_at_5
            value: 32.622
          - type: precision_at_1
            value: 19.083
          - type: precision_at_10
            value: 5.914
          - type: precision_at_100
            value: 0.889
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 12.483
          - type: precision_at_5
            value: 9.315
          - type: recall_at_1
            value: 18.613
          - type: recall_at_10
            value: 56.88999999999999
          - type: recall_at_100
            value: 84.207
          - type: recall_at_1000
            value: 96.20100000000001
          - type: recall_at_3
            value: 36.262
          - type: recall_at_5
            value: 44.925
        task:
          type: Retrieval
      - dataset:
          config: en
          name: MTEB MTOPDomainClassification (en)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 94.77656178750571
          - type: f1
            value: 94.37966073742972
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MTOPIntentClassification (en)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 77.72457820337438
          - type: f1
            value: 59.11327646329634
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveIntentClassification (en)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 73.17753866846
          - type: f1
            value: 71.22604635414544
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveScenarioClassification (en)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 76.67787491593813
          - type: f1
            value: 76.87653151298177
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedrxivClusteringP2P
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
          split: test
          type: mteb/medrxiv-clustering-p2p
        metrics:
          - type: v_measure
            value: 33.3485843514749
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MedrxivClusteringS2S
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
          split: test
          type: mteb/medrxiv-clustering-s2s
        metrics:
          - type: v_measure
            value: 29.792796913883617
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MindSmallReranking
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
          split: test
          type: mteb/mind_small
        metrics:
          - type: map
            value: 31.310305659169963
          - type: mrr
            value: 32.38286775798406
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB NFCorpus
          revision: None
          split: test
          type: nfcorpus
        metrics:
          - type: map_at_1
            value: 4.968
          - type: map_at_10
            value: 11.379
          - type: map_at_100
            value: 14.618999999999998
          - type: map_at_1000
            value: 16.055
          - type: map_at_3
            value: 8.34
          - type: map_at_5
            value: 9.690999999999999
          - type: mrr_at_1
            value: 43.034
          - type: mrr_at_10
            value: 51.019999999999996
          - type: mrr_at_100
            value: 51.63100000000001
          - type: mrr_at_1000
            value: 51.681
          - type: mrr_at_3
            value: 49.174
          - type: mrr_at_5
            value: 50.181
          - type: ndcg_at_1
            value: 41.176
          - type: ndcg_at_10
            value: 31.341
          - type: ndcg_at_100
            value: 29.451
          - type: ndcg_at_1000
            value: 38.007000000000005
          - type: ndcg_at_3
            value: 36.494
          - type: ndcg_at_5
            value: 34.499
          - type: precision_at_1
            value: 43.034
          - type: precision_at_10
            value: 23.375
          - type: precision_at_100
            value: 7.799
          - type: precision_at_1000
            value: 2.059
          - type: precision_at_3
            value: 34.675
          - type: precision_at_5
            value: 30.154999999999998
          - type: recall_at_1
            value: 4.968
          - type: recall_at_10
            value: 15.104999999999999
          - type: recall_at_100
            value: 30.741000000000003
          - type: recall_at_1000
            value: 61.182
          - type: recall_at_3
            value: 9.338000000000001
          - type: recall_at_5
            value: 11.484
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NQ
          revision: None
          split: test
          type: nq
        metrics:
          - type: map_at_1
            value: 23.716
          - type: map_at_10
            value: 38.32
          - type: map_at_100
            value: 39.565
          - type: map_at_1000
            value: 39.602
          - type: map_at_3
            value: 33.848
          - type: map_at_5
            value: 36.471
          - type: mrr_at_1
            value: 26.912000000000003
          - type: mrr_at_10
            value: 40.607
          - type: mrr_at_100
            value: 41.589
          - type: mrr_at_1000
            value: 41.614000000000004
          - type: mrr_at_3
            value: 36.684
          - type: mrr_at_5
            value: 39.036
          - type: ndcg_at_1
            value: 26.883000000000003
          - type: ndcg_at_10
            value: 46.096
          - type: ndcg_at_100
            value: 51.513
          - type: ndcg_at_1000
            value: 52.366
          - type: ndcg_at_3
            value: 37.549
          - type: ndcg_at_5
            value: 41.971000000000004
          - type: precision_at_1
            value: 26.883000000000003
          - type: precision_at_10
            value: 8.004
          - type: precision_at_100
            value: 1.107
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 17.516000000000002
          - type: precision_at_5
            value: 13.019
          - type: recall_at_1
            value: 23.716
          - type: recall_at_10
            value: 67.656
          - type: recall_at_100
            value: 91.413
          - type: recall_at_1000
            value: 97.714
          - type: recall_at_3
            value: 45.449
          - type: recall_at_5
            value: 55.598000000000006
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB QuoraRetrieval
          revision: None
          split: test
          type: quora
        metrics:
          - type: map_at_1
            value: 70.486
          - type: map_at_10
            value: 84.292
          - type: map_at_100
            value: 84.954
          - type: map_at_1000
            value: 84.969
          - type: map_at_3
            value: 81.295
          - type: map_at_5
            value: 83.165
          - type: mrr_at_1
            value: 81.16
          - type: mrr_at_10
            value: 87.31
          - type: mrr_at_100
            value: 87.423
          - type: mrr_at_1000
            value: 87.423
          - type: mrr_at_3
            value: 86.348
          - type: mrr_at_5
            value: 86.991
          - type: ndcg_at_1
            value: 81.17
          - type: ndcg_at_10
            value: 88.067
          - type: ndcg_at_100
            value: 89.34
          - type: ndcg_at_1000
            value: 89.43900000000001
          - type: ndcg_at_3
            value: 85.162
          - type: ndcg_at_5
            value: 86.752
          - type: precision_at_1
            value: 81.17
          - type: precision_at_10
            value: 13.394
          - type: precision_at_100
            value: 1.5310000000000001
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.193
          - type: precision_at_5
            value: 24.482
          - type: recall_at_1
            value: 70.486
          - type: recall_at_10
            value: 95.184
          - type: recall_at_100
            value: 99.53999999999999
          - type: recall_at_1000
            value: 99.98700000000001
          - type: recall_at_3
            value: 86.89
          - type: recall_at_5
            value: 91.365
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB RedditClustering
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
          split: test
          type: mteb/reddit-clustering
        metrics:
          - type: v_measure
            value: 44.118229475102154
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB RedditClusteringP2P
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
          split: test
          type: mteb/reddit-clustering-p2p
        metrics:
          - type: v_measure
            value: 48.68049097629063
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB SCIDOCS
          revision: None
          split: test
          type: scidocs
        metrics:
          - type: map_at_1
            value: 4.888
          - type: map_at_10
            value: 12.770999999999999
          - type: map_at_100
            value: 15.238
          - type: map_at_1000
            value: 15.616
          - type: map_at_3
            value: 8.952
          - type: map_at_5
            value: 10.639999999999999
          - type: mrr_at_1
            value: 24.099999999999998
          - type: mrr_at_10
            value: 35.375
          - type: mrr_at_100
            value: 36.442
          - type: mrr_at_1000
            value: 36.488
          - type: mrr_at_3
            value: 31.717000000000002
          - type: mrr_at_5
            value: 33.722
          - type: ndcg_at_1
            value: 24.099999999999998
          - type: ndcg_at_10
            value: 21.438
          - type: ndcg_at_100
            value: 30.601
          - type: ndcg_at_1000
            value: 36.678
          - type: ndcg_at_3
            value: 19.861
          - type: ndcg_at_5
            value: 17.263
          - type: precision_at_1
            value: 24.099999999999998
          - type: precision_at_10
            value: 11.4
          - type: precision_at_100
            value: 2.465
          - type: precision_at_1000
            value: 0.392
          - type: precision_at_3
            value: 18.733
          - type: precision_at_5
            value: 15.22
          - type: recall_at_1
            value: 4.888
          - type: recall_at_10
            value: 23.118
          - type: recall_at_100
            value: 49.995
          - type: recall_at_1000
            value: 79.577
          - type: recall_at_3
            value: 11.398
          - type: recall_at_5
            value: 15.428
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SICK-R
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
          split: test
          type: mteb/sickr-sts
        metrics:
          - type: cos_sim_pearson
            value: 85.33198632617024
          - type: cos_sim_spearman
            value: 79.09232997136625
          - type: euclidean_pearson
            value: 81.49986011523868
          - type: euclidean_spearman
            value: 77.03530620283338
          - type: manhattan_pearson
            value: 81.4741227286667
          - type: manhattan_spearman
            value: 76.98641133116311
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS12
          revision: a0d554a64d88156834ff5ae9920b964011b16384
          split: test
          type: mteb/sts12-sts
        metrics:
          - type: cos_sim_pearson
            value: 84.60103674582464
          - type: cos_sim_spearman
            value: 75.03945035801914
          - type: euclidean_pearson
            value: 80.82455267481467
          - type: euclidean_spearman
            value: 70.3317366248871
          - type: manhattan_pearson
            value: 80.8928091531445
          - type: manhattan_spearman
            value: 70.43207370945672
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS13
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
          split: test
          type: mteb/sts13-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.52453177109315
          - type: cos_sim_spearman
            value: 83.26431569305103
          - type: euclidean_pearson
            value: 82.10494657997404
          - type: euclidean_spearman
            value: 83.41028425949024
          - type: manhattan_pearson
            value: 82.08669822983934
          - type: manhattan_spearman
            value: 83.39959776442115
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS14
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
          split: test
          type: mteb/sts14-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.67472020277681
          - type: cos_sim_spearman
            value: 78.61877889763109
          - type: euclidean_pearson
            value: 80.07878012437722
          - type: euclidean_spearman
            value: 77.44374494215397
          - type: manhattan_pearson
            value: 79.95988483102258
          - type: manhattan_spearman
            value: 77.36018101061366
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS15
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
          split: test
          type: mteb/sts15-sts
        metrics:
          - type: cos_sim_pearson
            value: 85.55450610494437
          - type: cos_sim_spearman
            value: 87.03494331841401
          - type: euclidean_pearson
            value: 81.4319784394287
          - type: euclidean_spearman
            value: 82.47893040599372
          - type: manhattan_pearson
            value: 81.32627203699644
          - type: manhattan_spearman
            value: 82.40660565070675
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS16
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
          split: test
          type: mteb/sts16-sts
        metrics:
          - type: cos_sim_pearson
            value: 81.51576965454805
          - type: cos_sim_spearman
            value: 83.0062959588245
          - type: euclidean_pearson
            value: 79.98888882568556
          - type: euclidean_spearman
            value: 81.08948911791873
          - type: manhattan_pearson
            value: 79.77952719568583
          - type: manhattan_spearman
            value: 80.79471040445408
        task:
          type: STS
      - dataset:
          config: en-en
          name: MTEB STS17 (en-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 87.28313046682885
          - type: cos_sim_spearman
            value: 87.35865211085007
          - type: euclidean_pearson
            value: 84.11501613667811
          - type: euclidean_spearman
            value: 82.82038954956121
          - type: manhattan_pearson
            value: 83.891278147302
          - type: manhattan_spearman
            value: 82.59947685165902
        task:
          type: STS
      - dataset:
          config: en
          name: MTEB STS22 (en)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cos_sim_pearson
            value: 67.80653738006102
          - type: cos_sim_spearman
            value: 68.11259151179601
          - type: euclidean_pearson
            value: 43.16707985094242
          - type: euclidean_spearman
            value: 58.96200382968696
          - type: manhattan_pearson
            value: 43.84146858566507
          - type: manhattan_spearman
            value: 59.05193977207514
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSBenchmark
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
          split: test
          type: mteb/stsbenchmark-sts
        metrics:
          - type: cos_sim_pearson
            value: 82.62068205073571
          - type: cos_sim_spearman
            value: 84.40071593577095
          - type: euclidean_pearson
            value: 80.90824726252514
          - type: euclidean_spearman
            value: 80.54974812534094
          - type: manhattan_pearson
            value: 80.6759008187939
          - type: manhattan_spearman
            value: 80.31149103896973
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SciDocsRR
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
          split: test
          type: mteb/scidocs-reranking
        metrics:
          - type: map
            value: 87.13774787530915
          - type: mrr
            value: 96.22233793802422
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SciFact
          revision: None
          split: test
          type: scifact
        metrics:
          - type: map_at_1
            value: 49.167
          - type: map_at_10
            value: 59.852000000000004
          - type: map_at_100
            value: 60.544
          - type: map_at_1000
            value: 60.577000000000005
          - type: map_at_3
            value: 57.242000000000004
          - type: map_at_5
            value: 58.704
          - type: mrr_at_1
            value: 51
          - type: mrr_at_10
            value: 60.575
          - type: mrr_at_100
            value: 61.144
          - type: mrr_at_1000
            value: 61.175000000000004
          - type: mrr_at_3
            value: 58.667
          - type: mrr_at_5
            value: 59.599999999999994
          - type: ndcg_at_1
            value: 51
          - type: ndcg_at_10
            value: 64.398
          - type: ndcg_at_100
            value: 67.581
          - type: ndcg_at_1000
            value: 68.551
          - type: ndcg_at_3
            value: 59.928000000000004
          - type: ndcg_at_5
            value: 61.986
          - type: precision_at_1
            value: 51
          - type: precision_at_10
            value: 8.7
          - type: precision_at_100
            value: 1.047
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 23.666999999999998
          - type: precision_at_5
            value: 15.6
          - type: recall_at_1
            value: 49.167
          - type: recall_at_10
            value: 77.333
          - type: recall_at_100
            value: 91.833
          - type: recall_at_1000
            value: 99.667
          - type: recall_at_3
            value: 65.594
          - type: recall_at_5
            value: 70.52199999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SprintDuplicateQuestions
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
          split: test
          type: mteb/sprintduplicatequestions-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 99.77227722772277
          - type: cos_sim_ap
            value: 94.14261011689366
          - type: cos_sim_f1
            value: 88.37209302325581
          - type: cos_sim_precision
            value: 89.36605316973414
          - type: cos_sim_recall
            value: 87.4
          - type: dot_accuracy
            value: 99.07128712871287
          - type: dot_ap
            value: 27.325649239129486
          - type: dot_f1
            value: 33.295838020247466
          - type: dot_precision
            value: 38.04627249357326
          - type: dot_recall
            value: 29.599999999999998
          - type: euclidean_accuracy
            value: 99.74158415841585
          - type: euclidean_ap
            value: 92.32695359979576
          - type: euclidean_f1
            value: 86.90534575772439
          - type: euclidean_precision
            value: 85.27430221366699
          - type: euclidean_recall
            value: 88.6
          - type: manhattan_accuracy
            value: 99.74257425742574
          - type: manhattan_ap
            value: 92.40335687760499
          - type: manhattan_f1
            value: 86.96507624200687
          - type: manhattan_precision
            value: 85.57599225556632
          - type: manhattan_recall
            value: 88.4
          - type: max_accuracy
            value: 99.77227722772277
          - type: max_ap
            value: 94.14261011689366
          - type: max_f1
            value: 88.37209302325581
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB StackExchangeClustering
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
          split: test
          type: mteb/stackexchange-clustering
        metrics:
          - type: v_measure
            value: 53.113809982945035
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackExchangeClusteringP2P
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
          split: test
          type: mteb/stackexchange-clustering-p2p
        metrics:
          - type: v_measure
            value: 33.90915908471812
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackOverflowDupQuestions
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
          split: test
          type: mteb/stackoverflowdupquestions-reranking
        metrics:
          - type: map
            value: 50.36481271702464
          - type: mrr
            value: 51.05628236142942
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SummEval
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
          split: test
          type: mteb/summeval
        metrics:
          - type: cos_sim_pearson
            value: 30.311305530381826
          - type: cos_sim_spearman
            value: 31.22029657606254
          - type: dot_pearson
            value: 12.157032445910177
          - type: dot_spearman
            value: 13.275185888551805
        task:
          type: Summarization
      - dataset:
          config: default
          name: MTEB TRECCOVID
          revision: None
          split: test
          type: trec-covid
        metrics:
          - type: map_at_1
            value: 0.167
          - type: map_at_10
            value: 1.113
          - type: map_at_100
            value: 5.926
          - type: map_at_1000
            value: 15.25
          - type: map_at_3
            value: 0.414
          - type: map_at_5
            value: 0.633
          - type: mrr_at_1
            value: 64
          - type: mrr_at_10
            value: 74.444
          - type: mrr_at_100
            value: 74.667
          - type: mrr_at_1000
            value: 74.679
          - type: mrr_at_3
            value: 72
          - type: mrr_at_5
            value: 74
          - type: ndcg_at_1
            value: 59
          - type: ndcg_at_10
            value: 51.468
          - type: ndcg_at_100
            value: 38.135000000000005
          - type: ndcg_at_1000
            value: 36.946
          - type: ndcg_at_3
            value: 55.827000000000005
          - type: ndcg_at_5
            value: 53.555
          - type: precision_at_1
            value: 64
          - type: precision_at_10
            value: 54.400000000000006
          - type: precision_at_100
            value: 39.08
          - type: precision_at_1000
            value: 16.618
          - type: precision_at_3
            value: 58.667
          - type: precision_at_5
            value: 56.8
          - type: recall_at_1
            value: 0.167
          - type: recall_at_10
            value: 1.38
          - type: recall_at_100
            value: 9.189
          - type: recall_at_1000
            value: 35.737
          - type: recall_at_3
            value: 0.455
          - type: recall_at_5
            value: 0.73
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Touche2020
          revision: None
          split: test
          type: webis-touche2020
        metrics:
          - type: map_at_1
            value: 2.4299999999999997
          - type: map_at_10
            value: 8.539
          - type: map_at_100
            value: 14.155999999999999
          - type: map_at_1000
            value: 15.684999999999999
          - type: map_at_3
            value: 3.857
          - type: map_at_5
            value: 5.583
          - type: mrr_at_1
            value: 26.531
          - type: mrr_at_10
            value: 40.489999999999995
          - type: mrr_at_100
            value: 41.772999999999996
          - type: mrr_at_1000
            value: 41.772999999999996
          - type: mrr_at_3
            value: 35.034
          - type: mrr_at_5
            value: 38.81
          - type: ndcg_at_1
            value: 21.429000000000002
          - type: ndcg_at_10
            value: 20.787
          - type: ndcg_at_100
            value: 33.202
          - type: ndcg_at_1000
            value: 45.167
          - type: ndcg_at_3
            value: 18.233
          - type: ndcg_at_5
            value: 19.887
          - type: precision_at_1
            value: 26.531
          - type: precision_at_10
            value: 19.796
          - type: precision_at_100
            value: 7.4079999999999995
          - type: precision_at_1000
            value: 1.5310000000000001
          - type: precision_at_3
            value: 19.728
          - type: precision_at_5
            value: 21.633
          - type: recall_at_1
            value: 2.4299999999999997
          - type: recall_at_10
            value: 14.901
          - type: recall_at_100
            value: 46.422000000000004
          - type: recall_at_1000
            value: 82.83500000000001
          - type: recall_at_3
            value: 4.655
          - type: recall_at_5
            value: 8.092
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ToxicConversationsClassification
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
          split: test
          type: mteb/toxic_conversations_50k
        metrics:
          - type: accuracy
            value: 72.90140000000001
          - type: ap
            value: 15.138716624430662
          - type: f1
            value: 56.08803013269606
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TweetSentimentExtractionClassification
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
          split: test
          type: mteb/tweet_sentiment_extraction
        metrics:
          - type: accuracy
            value: 59.85285795132994
          - type: f1
            value: 60.17575819903709
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TwentyNewsgroupsClustering
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
          split: test
          type: mteb/twentynewsgroups-clustering
        metrics:
          - type: v_measure
            value: 41.125150148437065
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB TwitterSemEval2015
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
          split: test
          type: mteb/twittersemeval2015-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 84.96751505036657
          - type: cos_sim_ap
            value: 70.45642872444971
          - type: cos_sim_f1
            value: 65.75274793133259
          - type: cos_sim_precision
            value: 61.806361736707686
          - type: cos_sim_recall
            value: 70.23746701846966
          - type: dot_accuracy
            value: 77.84466829588126
          - type: dot_ap
            value: 32.49904328313596
          - type: dot_f1
            value: 37.903122189387126
          - type: dot_precision
            value: 25.050951086956523
          - type: dot_recall
            value: 77.83641160949868
          - type: euclidean_accuracy
            value: 84.5920009536866
          - type: euclidean_ap
            value: 68.83700633574043
          - type: euclidean_f1
            value: 64.92803542871202
          - type: euclidean_precision
            value: 60.820465545056464
          - type: euclidean_recall
            value: 69.63060686015831
          - type: manhattan_accuracy
            value: 84.52643500029802
          - type: manhattan_ap
            value: 68.63286046599892
          - type: manhattan_f1
            value: 64.7476540705047
          - type: manhattan_precision
            value: 62.3291015625
          - type: manhattan_recall
            value: 67.36147757255937
          - type: max_accuracy
            value: 84.96751505036657
          - type: max_ap
            value: 70.45642872444971
          - type: max_f1
            value: 65.75274793133259
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB TwitterURLCorpus
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
          split: test
          type: mteb/twitterurlcorpus-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 88.65603291031164
          - type: cos_sim_ap
            value: 85.58148320880878
          - type: cos_sim_f1
            value: 77.63202920041064
          - type: cos_sim_precision
            value: 76.68444377675957
          - type: cos_sim_recall
            value: 78.60332614721281
          - type: dot_accuracy
            value: 79.71048239996895
          - type: dot_ap
            value: 59.31114839296281
          - type: dot_f1
            value: 57.13895527483783
          - type: dot_precision
            value: 51.331125015335545
          - type: dot_recall
            value: 64.4287034185402
          - type: euclidean_accuracy
            value: 86.99305312997244
          - type: euclidean_ap
            value: 81.87075965254876
          - type: euclidean_f1
            value: 73.53543008715421
          - type: euclidean_precision
            value: 72.39964184450082
          - type: euclidean_recall
            value: 74.70742223591007
          - type: manhattan_accuracy
            value: 87.04156479217605
          - type: manhattan_ap
            value: 81.7850497283247
          - type: manhattan_f1
            value: 73.52951955143475
          - type: manhattan_precision
            value: 70.15875236030492
          - type: manhattan_recall
            value: 77.2405297197413
          - type: max_accuracy
            value: 88.65603291031164
          - type: max_ap
            value: 85.58148320880878
          - type: max_f1
            value: 77.63202920041064
        task:
          type: PairClassification
model_creator: avsolatorio
model_name: GIST-all-MiniLM-L6-v2
pipeline_tag: text-generation
quantized_by: afrideva
tags:
  - feature-extraction
  - mteb
  - sentence-similarity
  - sentence-transformers
  - gguf
  - ggml
  - quantized

GIST-all-MiniLM-L6-v2-GGUF

Quantized GGUF model files for GIST-all-MiniLM-L6-v2 from avsolatorio

Original Model Card:

GIST Embedding v0 - all-MiniLM-L6-v2

GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning

The model is fine-tuned on top of the sentence-transformers/all-MiniLM-L6-v2 using the MEDI dataset augmented with mined triplets from the MTEB Classification training dataset (excluding data from the Amazon Polarity Classification task).

The model does not require any instruction for generating embeddings. This means that queries for retrieval tasks can be directly encoded without crafting instructions.

Technical paper: GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning

Data

The dataset used is a compilation of the MEDI and MTEB Classification training datasets. Third-party datasets may be subject to additional terms and conditions under their associated licenses. A HuggingFace Dataset version of the compiled dataset, and the specific revision used to train the model, is available:

The dataset contains a task_type key, which can be used to select only the mteb classification tasks (prefixed with mteb_).

The MEDI Dataset is published in the following paper: One Embedder, Any Task: Instruction-Finetuned Text Embeddings.

The MTEB Benchmark results of the GIST embedding model, compared with the base model, suggest that the fine-tuning dataset has perturbed the model considerably, which resulted in significant improvements in certain tasks while adversely degrading performance in some.

The retrieval performance for the TRECCOVID task is of note. The fine-tuning dataset does not contain significant knowledge about COVID-19, which could have caused the observed performance degradation. We found some evidence, detailed in the paper, that thematic coverage of the fine-tuning data can affect downstream performance.

Usage

The model can be easily loaded using the Sentence Transformers library.

import torch.nn.functional as F
from sentence_transformers import SentenceTransformer

revision = None  # Replace with the specific revision to ensure reproducibility if the model is updated.

model = SentenceTransformer("avsolatorio/GIST-all-MiniLM-L6-v2", revision=revision)

texts = [
    "Illustration of the REaLTabFormer model. The left block shows the non-relational tabular data model using GPT-2 with a causal LM head. In contrast, the right block shows how a relational dataset's child table is modeled using a sequence-to-sequence (Seq2Seq) model. The Seq2Seq model uses the observations in the parent table to condition the generation of the observations in the child table. The trained GPT-2 model on the parent table, with weights frozen, is also used as the encoder in the Seq2Seq model.",
    "Predicting human mobility holds significant practical value, with applications ranging from enhancing disaster risk planning to simulating epidemic spread. In this paper, we present the GeoFormer, a decoder-only transformer model adapted from the GPT architecture to forecast human mobility.",
    "As the economies of Southeast Asia continue adopting digital technologies, policy makers increasingly ask how to prepare the workforce for emerging labor demands. However, little is known about the skills that workers need to adapt to these changes"
]

# Compute embeddings
embeddings = model.encode(texts, convert_to_tensor=True)

# Compute cosine-similarity for each pair of sentences
scores = F.cosine_similarity(embeddings.unsqueeze(1), embeddings.unsqueeze(0), dim=-1)

print(scores.cpu().numpy())

Training Parameters

Below are the training parameters used to fine-tune the model:

Epochs = 40
Warmup ratio = 0.1
Learning rate = 5e-6
Batch size = 16
Checkpoint step = 102000
Contrastive loss temperature = 0.01

Evaluation

The model was evaluated using the MTEB Evaluation suite.

Citation

Please cite our work if you use GISTEmbed or the datasets we published in your projects or research. 🤗

@article{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    journal={arXiv preprint arXiv:2402.16829},
    year={2024},
    URL={https://arxiv.org/abs/2402.16829}
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowledgements

This work is supported by the "KCP IV - Exploring Data Use in the Development Economics Literature using Large Language Models (AI and LLMs)" project funded by the Knowledge for Change Program (KCP) of the World Bank - RA-P503405-RESE-TF0C3444.

The findings, interpretations, and conclusions expressed in this material are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.