metadata
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
library_name: transformers
license: mit
pipeline_tag: text-classification
tags:
- generated_from_trainer
model-index:
- name: pombe_curation_fold_0
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: afg1/pombe-canto-data
type: text-classification
split: test
metrics:
- type: accuracy
value: 0.9254826254826255
name: Accuracy
- type: recall
value: 0.9372056514913658
name: Recall
- type: precision
value: 0.9135424636572304
name: Precision
- type: f1
value: 0.9252227818674932
name: F1
- type: total_time_in_seconds
value: 118.32597812499444
name: Total_Time_In_Seconds
- type: samples_per_second
value: 21.88868447184131
name: Samples_Per_Second
- type: latency_in_seconds
value: 0.04568570583976619
name: Latency_In_Seconds
pombe_curation_fold_0
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.42.3
- Pytorch 2.2.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1