SentenceTransformer based on jeffwan/mmarco-mMiniLMv2-L12-H384-v1
This is a sentence-transformers model finetuned from jeffwan/mmarco-mMiniLMv2-L12-H384-v1. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: jeffwan/mmarco-mMiniLMv2-L12-H384-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges10242608-4ep-rerank")
# Run inference
sentences = [
"Aquest tràmit permet sol·licitar la llicència per a realitzar obres d'excavació a la via pública per a la instal·lació o reparació d'infraestructures de serveis i subministraments.",
'Quin és el paper de la via pública en aquest tràmit?',
"Quin és l'objectiu de presentar una denúncia per presumpta infracció urbanística?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0366 |
cosine_accuracy@3 | 0.0797 |
cosine_accuracy@5 | 0.1121 |
cosine_accuracy@10 | 0.1832 |
cosine_precision@1 | 0.0366 |
cosine_precision@3 | 0.0266 |
cosine_precision@5 | 0.0224 |
cosine_precision@10 | 0.0183 |
cosine_recall@1 | 0.0366 |
cosine_recall@3 | 0.0797 |
cosine_recall@5 | 0.1121 |
cosine_recall@10 | 0.1832 |
cosine_ndcg@10 | 0.0978 |
cosine_mrr@10 | 0.0721 |
cosine_map@100 | 0.0851 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0366 |
cosine_accuracy@3 | 0.0797 |
cosine_accuracy@5 | 0.1121 |
cosine_accuracy@10 | 0.1832 |
cosine_precision@1 | 0.0366 |
cosine_precision@3 | 0.0266 |
cosine_precision@5 | 0.0224 |
cosine_precision@10 | 0.0183 |
cosine_recall@1 | 0.0366 |
cosine_recall@3 | 0.0797 |
cosine_recall@5 | 0.1121 |
cosine_recall@10 | 0.1832 |
cosine_ndcg@10 | 0.0978 |
cosine_mrr@10 | 0.0721 |
cosine_map@100 | 0.0851 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0388 |
cosine_accuracy@3 | 0.0862 |
cosine_accuracy@5 | 0.1228 |
cosine_accuracy@10 | 0.2091 |
cosine_precision@1 | 0.0388 |
cosine_precision@3 | 0.0287 |
cosine_precision@5 | 0.0246 |
cosine_precision@10 | 0.0209 |
cosine_recall@1 | 0.0388 |
cosine_recall@3 | 0.0862 |
cosine_recall@5 | 0.1228 |
cosine_recall@10 | 0.2091 |
cosine_ndcg@10 | 0.1089 |
cosine_mrr@10 | 0.0789 |
cosine_map@100 | 0.0926 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0409 |
cosine_accuracy@3 | 0.0884 |
cosine_accuracy@5 | 0.1164 |
cosine_accuracy@10 | 0.1961 |
cosine_precision@1 | 0.0409 |
cosine_precision@3 | 0.0295 |
cosine_precision@5 | 0.0233 |
cosine_precision@10 | 0.0196 |
cosine_recall@1 | 0.0409 |
cosine_recall@3 | 0.0884 |
cosine_recall@5 | 0.1164 |
cosine_recall@10 | 0.1961 |
cosine_ndcg@10 | 0.1053 |
cosine_mrr@10 | 0.0782 |
cosine_map@100 | 0.0931 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0409 |
cosine_accuracy@3 | 0.0905 |
cosine_accuracy@5 | 0.1121 |
cosine_accuracy@10 | 0.1832 |
cosine_precision@1 | 0.0409 |
cosine_precision@3 | 0.0302 |
cosine_precision@5 | 0.0224 |
cosine_precision@10 | 0.0183 |
cosine_recall@1 | 0.0409 |
cosine_recall@3 | 0.0905 |
cosine_recall@5 | 0.1121 |
cosine_recall@10 | 0.1832 |
cosine_ndcg@10 | 0.1001 |
cosine_mrr@10 | 0.0751 |
cosine_map@100 | 0.09 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,173 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 9 tokens
- mean: 49.38 tokens
- max: 190 tokens
- min: 10 tokens
- mean: 21.0 tokens
- max: 48 tokens
- Samples:
positive anchor Havent-se d'acreditar la matriculació i inscripció en el respectiu centre públic o concertat, així com el cost de les llars d'infants, de l'educació especialitzada per les discapacitats físiques, psíquiques i sensorials en centres públics, concertats o privats.
Quin és el requisit per acreditar la llar d'infants?
El volant històric de convivència és el document que informa de la residencia en el municipi de Sitges, així com altres fets relatius a l'empadronament d'una persona, i detalla tots els domicilis, la data inicial i final en els que ha estat empadronada en cadascun d'ells, i les persones amb les què constava inscrites, segons les dades que consten al Padró Municipal d'Habitants fins a la data d'expedició.
Quin és el propòsit del volant històric de convivència?
Instal·lació de tanques sense obra.
Quins són els exemples d'instal·lacions que es poden comunicar amb aquest tràmit?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.2bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.6130 | 10 | 11.7801 | - | - | - | - | - |
0.9808 | 16 | - | 0.0132 | 0.0103 | 0.0105 | 0.0116 | 0.0105 |
1.2261 | 20 | 10.5594 | - | - | - | - | - |
1.8391 | 30 | 9.0859 | - | - | - | - | - |
1.9617 | 32 | - | 0.0337 | 0.0302 | 0.0298 | 0.0323 | 0.0298 |
2.4521 | 40 | 7.5747 | - | - | - | - | - |
2.9425 | 48 | - | 0.0811 | 0.0765 | 0.0679 | 0.0742 | 0.0679 |
3.0651 | 50 | 5.7656 | - | - | - | - | - |
3.6782 | 60 | 4.7495 | - | - | - | - | - |
3.9847 | 65 | - | 0.0926 | 0.0929 | 0.0822 | 0.0886 | 0.0822 |
4.2912 | 70 | 4.1026 | - | - | - | - | - |
4.9042 | 80 | 3.8201 | 0.0931 | 0.0926 | 0.0851 | 0.09 | 0.0851 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for adriansanz/sitges10242608-4ep-rerank
Base model
jeffwan/mmarco-mMiniLMv2-L12-H384-v1Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.037
- Cosine Accuracy@3 on dim 768self-reported0.080
- Cosine Accuracy@5 on dim 768self-reported0.112
- Cosine Accuracy@10 on dim 768self-reported0.183
- Cosine Precision@1 on dim 768self-reported0.037
- Cosine Precision@3 on dim 768self-reported0.027
- Cosine Precision@5 on dim 768self-reported0.022
- Cosine Precision@10 on dim 768self-reported0.018
- Cosine Recall@1 on dim 768self-reported0.037
- Cosine Recall@3 on dim 768self-reported0.080