adriansanz's picture
fm-tc-hybrid-MULTILINGUAL-spain-cat-VIC-8epocafin
7cf6ba5 verified
metadata
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Vic_model2
    results: []

Vic_model2

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2487
  • Accuracy: 0.9657
  • Precision: 0.9663
  • Recall: 0.9657
  • F1: 0.9654

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8139 1.0 1313 0.6269 0.83 0.8370 0.8300 0.8242
0.4671 2.0 2626 0.5028 0.8786 0.8837 0.8786 0.8757
0.343 3.0 3939 0.4058 0.8957 0.9038 0.8957 0.8965
0.222 4.0 5252 0.4109 0.9286 0.9295 0.9286 0.9274
0.1237 5.0 6565 0.3822 0.9357 0.9387 0.9357 0.9354
0.0629 6.0 7878 0.3639 0.9429 0.9459 0.9429 0.9433
0.0186 7.0 9191 0.2977 0.9557 0.9567 0.9557 0.9555
0.0104 8.0 10504 0.2487 0.9657 0.9663 0.9657 0.9654

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1