SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("adriansanz/ST-tramits-sitges-003-10ep")
sentences = [
"Els comerços locals obtenen un benefici principal de la implementació del projecte d'implantació i ús de la targeta de fidelització del comerç local de Sitges, que és la possibilitat d'augmentar les vendes i la fidelització dels clients.",
"Quin és el benefici que els comerços locals obtenen de la implementació del projecte d'implantació i ús de la targeta de fidelització?",
'Quin és el propòsit de la deixalleria municipal per a l’ambient?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1331 |
cosine_accuracy@3 |
0.2624 |
cosine_accuracy@5 |
0.3536 |
cosine_accuracy@10 |
0.5243 |
cosine_precision@1 |
0.1331 |
cosine_precision@3 |
0.0875 |
cosine_precision@5 |
0.0707 |
cosine_precision@10 |
0.0524 |
cosine_recall@1 |
0.1331 |
cosine_recall@3 |
0.2624 |
cosine_recall@5 |
0.3536 |
cosine_recall@10 |
0.5243 |
cosine_ndcg@10 |
0.2986 |
cosine_mrr@10 |
0.2301 |
cosine_map@100 |
0.2513 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1322 |
cosine_accuracy@3 |
0.263 |
cosine_accuracy@5 |
0.3541 |
cosine_accuracy@10 |
0.5286 |
cosine_precision@1 |
0.1322 |
cosine_precision@3 |
0.0877 |
cosine_precision@5 |
0.0708 |
cosine_precision@10 |
0.0529 |
cosine_recall@1 |
0.1322 |
cosine_recall@3 |
0.263 |
cosine_recall@5 |
0.3541 |
cosine_recall@10 |
0.5286 |
cosine_ndcg@10 |
0.3011 |
cosine_mrr@10 |
0.2322 |
cosine_map@100 |
0.253 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1342 |
cosine_accuracy@3 |
0.2655 |
cosine_accuracy@5 |
0.3589 |
cosine_accuracy@10 |
0.5257 |
cosine_precision@1 |
0.1342 |
cosine_precision@3 |
0.0885 |
cosine_precision@5 |
0.0718 |
cosine_precision@10 |
0.0526 |
cosine_recall@1 |
0.1342 |
cosine_recall@3 |
0.2655 |
cosine_recall@5 |
0.3589 |
cosine_recall@10 |
0.5257 |
cosine_ndcg@10 |
0.3011 |
cosine_mrr@10 |
0.2329 |
cosine_map@100 |
0.2538 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1266 |
cosine_accuracy@3 |
0.2633 |
cosine_accuracy@5 |
0.3564 |
cosine_accuracy@10 |
0.5229 |
cosine_precision@1 |
0.1266 |
cosine_precision@3 |
0.0878 |
cosine_precision@5 |
0.0713 |
cosine_precision@10 |
0.0523 |
cosine_recall@1 |
0.1266 |
cosine_recall@3 |
0.2633 |
cosine_recall@5 |
0.3564 |
cosine_recall@10 |
0.5229 |
cosine_ndcg@10 |
0.2972 |
cosine_mrr@10 |
0.2285 |
cosine_map@100 |
0.2496 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1274 |
cosine_accuracy@3 |
0.2684 |
cosine_accuracy@5 |
0.3553 |
cosine_accuracy@10 |
0.521 |
cosine_precision@1 |
0.1274 |
cosine_precision@3 |
0.0895 |
cosine_precision@5 |
0.0711 |
cosine_precision@10 |
0.0521 |
cosine_recall@1 |
0.1274 |
cosine_recall@3 |
0.2684 |
cosine_recall@5 |
0.3553 |
cosine_recall@10 |
0.521 |
cosine_ndcg@10 |
0.2973 |
cosine_mrr@10 |
0.2293 |
cosine_map@100 |
0.2507 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1224 |
cosine_accuracy@3 |
0.2546 |
cosine_accuracy@5 |
0.344 |
cosine_accuracy@10 |
0.5165 |
cosine_precision@1 |
0.1224 |
cosine_precision@3 |
0.0849 |
cosine_precision@5 |
0.0688 |
cosine_precision@10 |
0.0516 |
cosine_recall@1 |
0.1224 |
cosine_recall@3 |
0.2546 |
cosine_recall@5 |
0.344 |
cosine_recall@10 |
0.5165 |
cosine_ndcg@10 |
0.2909 |
cosine_mrr@10 |
0.2225 |
cosine_map@100 |
0.2429 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,399 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 9 tokens
- mean: 49.44 tokens
- max: 178 tokens
|
- min: 9 tokens
- mean: 21.17 tokens
- max: 48 tokens
|
- Samples:
positive |
anchor |
L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges. |
Quin és el benefici de les subvencions per a les entitats esportives? |
L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges al llarg de l'exercici per la qual es sol·licita la subvenció, i reuneixin les condicions assenyalades a les bases. |
Quin és el període d'execució dels projectes i activitats esportives? |
Certificat on s'indica el nombre d'habitatges que configuren el padró de l'Impost sobre Béns Immobles del municipi o bé d'una part d'aquest. |
Quin és el contingut del certificat del nombre d'habitatges? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.2
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_1024_cosine_map@100 |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.4 |
10 |
3.5464 |
- |
- |
- |
- |
- |
- |
0.8 |
20 |
2.3861 |
- |
- |
- |
- |
- |
- |
1.0 |
25 |
- |
0.2327 |
0.2144 |
0.2252 |
0.2286 |
0.1938 |
0.2329 |
1.1975 |
30 |
1.8712 |
- |
- |
- |
- |
- |
- |
1.5975 |
40 |
1.3322 |
- |
- |
- |
- |
- |
- |
1.9975 |
50 |
0.9412 |
0.2410 |
0.2310 |
0.2383 |
0.2415 |
0.2236 |
0.2436 |
2.395 |
60 |
0.806 |
- |
- |
- |
- |
- |
- |
2.795 |
70 |
0.5024 |
- |
- |
- |
- |
- |
- |
2.995 |
75 |
- |
0.2451 |
0.2384 |
0.2455 |
0.2487 |
0.2323 |
0.2423 |
3.1925 |
80 |
0.4259 |
- |
- |
- |
- |
- |
- |
3.5925 |
90 |
0.3556 |
- |
- |
- |
- |
- |
- |
3.9925 |
100 |
0.2555 |
0.2477 |
0.2443 |
0.2417 |
0.2485 |
0.2369 |
0.2470 |
4.39 |
110 |
0.2611 |
- |
- |
- |
- |
- |
- |
4.79 |
120 |
0.1939 |
- |
- |
- |
- |
- |
- |
4.99 |
125 |
- |
0.2490 |
0.2425 |
0.2479 |
0.2485 |
0.2386 |
0.2495 |
5.1875 |
130 |
0.2021 |
- |
- |
- |
- |
- |
- |
5.5875 |
140 |
0.1537 |
- |
- |
- |
- |
- |
- |
5.9875 |
150 |
0.1277 |
0.2535 |
0.2491 |
0.2491 |
0.2534 |
0.2403 |
0.2541 |
6.385 |
160 |
0.1213 |
- |
- |
- |
- |
- |
- |
6.785 |
170 |
0.1035 |
- |
- |
- |
- |
- |
- |
6.985 |
175 |
- |
0.2513 |
0.2493 |
0.2435 |
0.2515 |
0.2380 |
0.2528 |
7.1825 |
180 |
0.0965 |
- |
- |
- |
- |
- |
- |
7.5825 |
190 |
0.0861 |
- |
- |
- |
- |
- |
- |
7.9825 |
200 |
0.0794 |
0.2529 |
0.2536 |
0.2526 |
0.2545 |
0.2438 |
0.2570 |
8.38 |
210 |
0.0734 |
- |
- |
- |
- |
- |
- |
8.78 |
220 |
0.066 |
- |
- |
- |
- |
- |
- |
8.98 |
225 |
- |
0.2538 |
0.2523 |
0.2519 |
0.2542 |
0.2457 |
0.2572 |
9.1775 |
230 |
0.0731 |
- |
- |
- |
- |
- |
- |
9.5775 |
240 |
0.0726 |
- |
- |
- |
- |
- |
- |
9.9775 |
250 |
0.0632 |
0.2513 |
0.2507 |
0.2496 |
0.2538 |
0.2429 |
0.2530 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}